The O’Nan-Scott Theorem for
Finite Primitive Permutation Groups,

and Finite Representability
by

Joanna Fawcett

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in

Pure Mathematics

Waterloo, Ontario, Canada, 2009

(© Joanna Fawcett 2009






I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111






Abstract

The O’Nan-Scott Theorem classifies finite primitive permutation groups into one of five
isomorphism classes. This theorem is very useful for answering questions about finite
permutation groups since four out of the five isomorphism classes are well understood. The
proof of this theorem currently relies upon the classification of the finite simple groups as

it requires a consequence of this classification, the Schreier Conjecture.

After reviewing some needed group theoretic concepts, I give a detailed proof of the O’Nan-
Scott Theorem. I then examine how the techniques of this proof have been applied to an
open problem which asks whether every finite lattice can be embedded as an interval into
the subgroup lattice of a finite group.
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Introduction

Until the mid nineteenth century, the concept of a group was essentially that of a permuta-
tion group, and even though we now have a more abstract concept of a group, it is a simple
result of Cayley’s that any group can be embedded into a permutation group. Although it
is often less beneficial to study groups within this framework, permutation groups are still
quite important and not only appear in many other branches of mathematics (for example,
combinatorics) but also form an active field of research today. Primitive finite permutation
groups can be thought of as the building blocks of finite permutation groups, and questions
about finite permutation groups can often be reduced to the primitive case. Thus it would
be very useful to know the structure of these groups.

The largest achievement in finite (abstract) group theory in the last half century (and
possibly ever) is the classification of all finite simple groups. Its proof, if it can be called
that, spans thousands of pages and uses the research of hundreds of mathematicians, and
although there is a widespread belief that the proof is complete, this is not certain. Still,
the classification has been used to solve many open problems in group theory. One example
is the famous Schreier Conjecture which states that the outer automorphism group of every
finite simple group is solvable. This result turns out to be important for classifying finite

primitive permutation groups.

In 1979 (just before the classification of the finite simple groups was first announced
to be finished), O’'Nan and Scott independently presented a classification of the maximal
subgroups of the full symmetric group on n letters at the Santa Cruz conference on finite
groups (see [22]). We will see that, in general, certain maximal subgroups and primitive
permutation groups are closely related, and so this result led to a characterization of all
finite primitive permutation groups. Because of the form in which the original theorem
was presented, one case was omitted in the transfer to primitive groups, as pointed out by
Aschbacher. Interestingly, it is the proof of this case that requires the Schreier Conjecture.
This second and complete form of the theorem is referred to as the O’Nan-Scott Theorem,
and it basically states that any finite primitive permutation group must be in one of five
isomorphism classes. Four out of these five classes are well understood; for example, one
of the classes consists of certain subgroups of the affine group, a group in which every
element is a product of a translation and a linear bijection on a finite dimensional vector
space. Thus this theorem is a useful tool for permutation group theorists (see [8, p. 137]
for examples of how it is used).

The heart of the proof of the O’Nan-Scott Theorem lies with the actions of the socle
of a primitive permutation group, which, in the case of a finite primitive permutation
group, consists of a direct product of isomorphic simple groups. One natural question to
ask, then, is if there are other group theoretic problems, not necessarily even permutation



group problems, that can be reduced to a case where the socle of the group has a structure
similar to that of a finite primitive permutation group, and moreover, if the methods of the
proof of the O’Nan-Scott Theorem can be applied to this case of the problem. One such
example is an open problem dating back to the 1960s which essentially asks whether every
finite lattice can be embedded as an interval into the subgroup lattice of a finite group; I
will refer to this problem as finite representability.

This thesis is a synthesis of material relating to and including a proof of the O’Nan-Scott
Theorem, as well as a description of the evolution of the problem of finite representability
as it pertains to one specific lattice. My intent is to be as self-contained and detailed
as possible. Of course, no proof of the classification of the finite simple groups is given!
Indeed, only a brief description of the finite simple groups and an idea of how the Schreier
Conjecture is proved is provided. Besides these and a few other results whose proofs are
too far off topic, I give full proofs both of elementary and advanced results. My hope is
that anyone with a first course in group theory will be able to understand the bulk of the
material presented.

There seems to be little literature on the subject of the O’Nan-Scott Theorem, which
should not be that surprising, considering how new it is. In [14], Liebeck, Praeger and
Saxl give an outline of the five isomorphism classes and a complete, although dense, proof
of the O’Nan-Scott Theorem. I found it to be the most straightforward presentation of
the subject; as such, it served as my primary reference for the theorem. More details are
given by Dixon and Mortimer in [8], though their descriptions of the isomorphism classes
approach from a different angle than that of [14]; this book was very helpful for filling in
gaps. In my descriptions of the isomorphism classes and in my proof of O’Nan-Scott, I am
essentially following [14], providing proofs and details where they are missing; for example,
I supply proofs to all of the properties of the isomorphism classes listed in [14] (with the
exception of two claims which are not required for the proof of O’Nan-Scott). To get a
better sense of how the proof of the O’Nan-Scott Theorem functions, I have reorganized
and broken down the proof of [14] into several lemmas and propositions; two of the lemmas
also form one of the main links to the problem of finite representability.

As for the problem of finite representability, I have included full proofs of the two results
which describe the socle, filling in the details. In doing this, I also generalize one of these
theorems (3.3.2), though it is certainly not a complicated generalization. Lastly, I give a
proof of one of Lucchini’s reductions to show how he uses the methods of the O’Nan-Scott
Theorem proof. His proof is already quite detailed, but I have changed it somewhat to

provide as much detail as possible while still preserving its length.



1 Preliminaries

In this section, I review and give notation for some standard concepts from group theory
which will be used throughout this thesis. Note that function composition will be from left
to right. Both [19] and [20] served as general references for this section. When definitions,

results or proofs come from specific sources, those sources are mentioned.

1.1 Centralizers and Normalizers

Let G be a group, and let g and h be elements of G. The commutator of g and h is
lg,h] == g 'h~tgh. If [g,h] = 1 then g and h commute. The centralizer of h in G is
Ce(h) == {g € G : gh = hg}; that is, the set of all elements of G' that commute with h.
If H < @G, then the centralizer of H in G is Cq(H) := {9 € G : gh = hg for all h € H}.
Both Cg(h) and Cg(H) are subgroups of G. Moreover, if H < G, then Co(H) < G since
if g€ G and a € Cg(H), then for all h € H, ghg™' € H, and thus

(97 ag)"h(g " ag) = g a  (ghg " )ag = g~ (ghg™")g = h.

Let H and K be subgroups of G. If K < Cg(H), we say that K centralizes H. Define
[H,K] := ({[h,k] : h € H 'k € K}). Then H and K centralize each other if and only if
[H, K] = {1},

Let H and G be groups. The normalizer of H in G is

No(H):={g€G:g'Hg= H}.

Then Ng(H) is a subgroup of G, and if H < G, then H is clearly a normal subgroup of
Ng(H). In fact, Ng(H) is the largest subgroup of G in which H is normal. H is said to
normalize K < G if H < Ng(K), and H is said to be self-normalizing in G if Ng(H) = H.
Lastly, note that Cs(H) < Ng(H) for all H < G.

The center of a group G, denoted by Z(G), is of course the set of all elements of G that
commute with every element of G. Z(G) is clearly a normal subgroup of G. G is abelian
if and only if G = Z(G), and so the center of a simple nonabelian group must be trivial.
Note also that if H < G, then Z(H) = Cq(H)N H.

The group of all isomorphisms of a group G onto itself is called the automorphism group
of G, and is denoted by Aut(G). Let ¢, : G — G be defined by g, = h=tgh. Then ¢, €
Aut(G) and is called an inner automorphism of G. The inner automorphism group of G,
denoted by Inn(G), is the normal subgroup of Aut(G) consisting of all inner automorphisms
of G. Note that ¢ : G — Inn(G) defined by g — ¢, is an onto homomorphism with kernel
Z(G). Hence, G/Z(G) ~ Inn(G); in particular, if T" is simple and nonabelian, then
T ~ Inn(T).



Proposition 1.1.1. Let T be a nonabelian simple group. If Inn(T) < G < Aut(T), then
Ce(Inn(T)) is trivial.

Proof. Let o0 € Cq(Inn(T)). Then o 'pi0 = ¢, for all t € T. So for every x € T,
t ot = 2p, = x0 oo = (tH(wo Ht)o = (to) tz(to).

Thus (to)t™' € Z(T) = {1} since T is nonabelian and simple, so to =t for all t € T'. Thus
o is the identity and Cg(Inn(T)) is trivial. O

I conclude this section with some useful technical results. The first lemma will be used
without reference throughout this thesis.

Lemma 1.1.2. Let G be a group with subgroups H, K and L, where L normalizes K.
Then HN(KL)=(HNK)L if and only if L < H.

Proof. t HNKL = (HNK)L, then L < (HNK)L = HN(KL) < H, as desired. On
the other hand, suppose that L < H. Since L normalizes K, H N KL and (H N K)L are
subgroups of G. Clearly (H N K)L < HN KL since L < H. For the reverse inclusion, let
h=kle HNKL. Then hi™' =k € HNK since L < H. Thus h= (™Yl € (HNK)L
and HN(KL) < (HNK)L. O

Lemma 1.1.3. Let G; X Gy X - -+ X G}, be a subgroup of a group G.
(i) Miza(Ca(Gi)Gi) = (Nizy Ca(Gi))Gr -+ G
(i) N, Ca(Gy) = Ca(Gr x Ga x -+ x Gy).

Proof. (i) Note that for each i, G; < Cg(Gj) for all j # i. Moreover, G; and Cg(G;)
normalize each other for all ¢ as they are both normal subgroups of Ng(G;) for all i; it
follows that (),_, Cq(G;) < (', Ng(Gy) for all I € {1,...,k}. But G; I Gy --- G, for all
i,l € {l,...,k} such that i <l ,s0 Gy---G; < ﬂizl Ng(Gy) for all 1 € {1,...,k}, and thus
(N, Ca(G))Gy-- Gy < G forall L € {1,...,k}.
The proof is by induction on k£ > 1. If £ = 1 the result is trivial. Suppose that it is
true for £ — 1 for some k > 1. Then
Ny (Ca(Gi)Gy)
(N5 Ca(Gi)Gi) N GrCa(Gy)
(M) Ca(G)Gr -+ Gra]l N GrC(Gr) - (IH)
(Co(Gr) NI(NZ) CalGi))Gr--- GG (Gr < N2 Ca(Gh))
[Ca(Gr) N (NEZ CalG)(Gr -+ Gr1)Gr (G- Gry < CalGh))
(Miz Co(G)Gr -+ G
(ii) If ¢ € G commutes with every element of G; for all i, then g commutes with
every element of G; x -+ X Gy, so ﬂle Co(G;) < Co(Gy x Gy x --- x Gy). But G; <
G1 X Gy x - -+ x G, implies that Cg(G1 x Gy X -+ X G) < C(G;) for all 4. O



1.2 Group Actions

Let G be a group and € a nonempty set. Let S denote the symmetric group on 2. An
action of G on ) is a homomorphism ¢ : G — S, while Q is said to be a G-space if there
exists a function mapping from Q x G to Q that satisfies (a?)" = a%" and o' = « for all
a € Qand g, h € G, where the image of («, g) is denoted by 9.

If ¢ is an action of G on 2, then a9 := a(g¢) satisfies the two conditions of a G-space,
so that €2 is a G-space. On the other hand, if 2 is a G-space and g € G, let 7, : 2 — Q
be defined by « +— af. Then 7, € S for all g € G, and it is easy to check that ¢ : g — 7,
is then an action of G on 2. Thus these two concepts of an action of a group on a set are
equivalent.

Here are some basic definitions about group actions. Let 2 be a G-space, and let
a, 3 € €. Define a relation ~ on 2 by a ~ [ if there exists a g € G with o = 3. Then
~ is an equivalence relation whose equivalence classes we call orbits of G. Let a be in an
orbit of G. Then the orbit can be written as {a? : g € G} =: Og(a), which we call the
orbit of a. G is said to be transitive, or € is said to be a transitive G-space, if there is

only one orbit, namely, 2. The stabilizer of o in G is
Go:={9€G:a’ =a},

which is a subgroup of G. The setwise stabilizer of I' C ) in G is
Gr:={geG:17=T},

which is also a subgroup of G, and of course when I' = {a}, Gr = G,. G is said to be
semiregular if G, = {1} for all & € Q, and G is said to be regular if it is both transitive
and semiregular.

G is a permutation group on € if it is a subgroup of S. The image of an action ¢ is
called the permutation group induced on Q by G, denoted by G*. An action is faithful if
ker(¢) = {1}, or, equivalently,  is a faithful G-space if whenever o = o for all a € Q,
we have that g = h. In this case, G acts as a permutation group on  as G ~ G¢ < S%. In
light of the fact that we have two equivalent definitions of an action, the action of ¢ € S%
will either be written on the right as ag or in the form af, depending on the context.
Note that if G < S is transitive, then clearly every subgroup of S containing G is also
transitive. Similarly, if G < S is semiregular, then every subgroup of G is semiregular.

Next is a quick proposition about centralizers in permutation groups which illustrates
some of the above concepts and is also fundamental to the proof of the O’Nan-Scott

Theorem.
Proposition 1.2.1 ([25, p. 155]). Let G be a permutation group on Q.

(1) If Cso(G) is transitive on Q, then G is semiregular.
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(i1) If G is transitive on Q, then Cga(G) is semiregular.

Proof. (i) Let a € Q and g € G,,. Since Cge(G) is transitive on €2, for each 5 € Q there
exists an h € Cgo(G) such that 3 = a”. Then

B39 =a" =a% = ()" =" = 3.

Thus g = 1 and so G, = {1}.
(ii) Clearly G < Cgo(Cga(G)), which implies that Cge(Cge(G)) is transitive as G is.
Then by part (i), Cse(G) is semiregular. O

Now we look at some particular G-spaces. Define an action of G on G by right multi-
plication; that is, 9 = xg for all g,z € G. This is called the right reqular representation
of G. The left reqular representation of G is given by the action 29 = g~ 'z of G on itself.
Both actions are regular. G also acts on itself by conjugation; that is, 29 := ¢ 'xg for all
g,z € (. This action is very important and is used often. It is routine to verify that these
three definitions do give rise to legitimate actions.

Let H < G. The right coset space of H in G, denoted by G\ H, is simply the set of
right cosets of H in G. The backslash is used to avoid confusion with the quotient G/H.
It is routine to verify that G\ H is a transitive G-space with action (Ha)? := Hag for all
Ha € G\H and g € G. Moreover, Gy, = g 'Hg for all g € G since h € Gy, <= Hgh =
Hg < ghg '€ H <= h € g 'Hg. In particular, Gy = H. It is not hard to see that
the kernel of this action is ﬂgEG g 'Hg, which is called the core of H in G. Note that the
core of H in G is a normal subgroup of GG contained in H. If the core of H is trivial, then
H is said to be core-free. Hence, the action of G on the coset space G\ H is faithful if and
only if H is a core-free subgroup of G. In order to show that H is core-free, we typically
show that any normal subgroup of G contained in H must be trivial. The left coset space
of H in G is defined analogously.

The following proposition is a collection of basic well-known results about G-spaces
which are very useful and which will be used repeatedly and freely without reference. First,
we need one more definition: two G-spaces ) and I' are isomorphic if there exists a bijection
¢ : 0 — I' such that (af)p = (ap)? for all @ € Q and g € G. Note that G, = G, for all
ac€Qsincege G, <= ! =a <= dp=ap <= () =ap <= g€ Gay.

Proposition 1.2.2. Let €2 be a G-space. Let o € ) and g € G be arbitrary.
(1) Gos = g7 1GLg.
(i1) If Q contains at least two elements, then G, is not transitive on §Q.

(iii) The coset space G\G,, is isomorphic to the orbit Oc(a). It follows that G, is a proper
subgroup of G so long as 0g(«) contains an element different from a.

6



() If G is transitive on Q, then G\G,, ~ Q, and if G is reqular on 2, then G ~ §, where
G acts on itself by right multiplication.

(v) If G is finite, then |G : G.| = |0c(@)|; if G is finite and transitive on 2, then
G : G,] =1|9|; and if G is finite and regular on Q, then |G| = |Q].

1

Proof. () h € Goo <= a9 =9 = a9 = (") = (a9)9"
G. <= heg'G.g.

(ii) Suppose that G, is transitive on Q. Let § € Q. Then there exists a g € G, with
B =ad as G, is transitive on . But o = a so = a. Thus 2 = {a}.

(iii) Define ¢ : G\G, — 0Oc(a) by Gog — a9 Then Gog = G,h < gh™' €
G, < o' =a <= af =" Thus ¢ is well-defined and 1-1. ¢ is clearly onto and

=a < ghg™'c

(Gog) o = (Gagh)p = a9 = (a9)" = ((Gag)p)", so ¢ is a G-space isomorphism.

(iv) Since G is transitive, Og(a) = €2, so G\G, ~ Q by (iii). If G is also semiregular,
then G\{1} ~ 2, and it is easy to verify that the obvious map from G to G\{1} is a
G-space isomorphism if G acts on itself by right multiplication. Hence, G ~ (2.

(v) Each follows immediately from (iii) and (iv). O

Now for the final definition of this section. We say that G’ < S is permutation isomor-
phic to H < SU if there is a bijection ¢ : Q — I' and an isomorphism 1 : G — H such that
(ag)p = (ap)(gy) for all @ € Q and g € G. In other words, G and H only differ in the
labelling of their elements. Often, we simply say that v is a permutation isomorphism of G
onto H. I conclude this section with several results about permutation isomorphisms. The
first result gives us a sufficient condition for permutation isomorphism when the actions
are transitive that is very useful in practice.

Proposition 1.2.3. Suppose that G < S® and H < ST where both actions are transitive.
If there is an isomorphism ¢ : G — H such that Gov = H, for some o € Q and v € T,
then G 1s permutation isomorphic to H.

Proof. Since G acts transitively on 2, every element of €2 has the form ag for some g € G.
Define ¢ : Q@ — I' by ag — 7(g%). Then since G, = H,,

ag=ag < g €CGy <= (dg "W e H, = ~(g¥) =7(dV),

so ¢ is well-defined and 1-1. Since H acts transitively on I', a typical element of I' has the
form ~vh for some h € H, and (ahyp~1)p = y(hy)1)y = vh. Thus ¢ is onto. Lastly, let
9,9 € G. Then

((ag)g)p = (ag'g)e = v(d'g¢¥) = (vg'¥)gb = (ag'e)(g2)).

Thus G is permutation isomorphic to H. O



The following is an exercise in [8, p. 18].

Proposition 1.2.4. If G and H are both permutation groups on 2, then G and H are

permutation isomorphic if and only if G and H are conjugate in S*.

Proof. Suppose that G and H are permutation isomorphic. Then there exists a bijection
¢ Q — Q and an isomorphism @ : G — H with (ag)y = (ap)(gy) for all @ € Q and
g € G. Then ag = ((ap)(g))p~t = a(e(gy)p™!) for all a € Q and g € G, which implies
that g = p(g)p~! for all g € G. Thus G = p(GY)p™' = pHp™!, and we are done since
p € S

On the other hand, suppose that G = @H™ ! for some ¢ € S?. Define ¢ : G — H
by g1 = ¢ 1gyp; it is routine to verify that ¢ is an isomorphism. Then for all ¢ € G and
a €Q, ag=a(p(plgp)e!) = alp(gi)e™), so (ag)e = (ap)(g¥) and G is permutation
isomorphic to H. O

This next result is fairly intuitive but is proved here for the sake of being thorough.

Proposition 1.2.5. Suppose that 0 is a permutation isomorphism from G onto H where
G < S? and H < SU. Then there exists a permutation isomorphism v : S¢ — SU such
that | = 6. In particular, Ngo(G)Y) = Ngr(H).

Proof. Let ¢ : Q — I be the bijection for which (ag)y = (ap)(gf) for all o € Q and
g€ G. Let m € S%and v € I'. Then v = a for some unique a € €. Define 1, : I' — I by
v+ (am)p. Suppose that vy, = 71, where v = ap and 7' = ’¢. Then (am)p = (a/7)p
which implies that o = o’ since 7 is 1-1. Thus v = v/ so ¢, is 1-1. Let v € T', and
define v/ := vo v~ lp € I. Then Y9, = ((yo 'n )7m)p = v, so ¢, is onto. Thus
Y, € ST for all m € S, so we may define ¢ : S — ST by 7+ 1. Let 7,7’ € S?. Then
Ybrthe = ()b = ((am)7' )@ = Ythpe for all v € T, 80 ,thy = Yy for all w1, 7" € S
Thus ¢ is a homomorphism. If 1, is the identity, then ap = (am)p for all a € €, so
a = an for all @ € Q. Thus v is 1-1. Let 7 € ST. Define 7’ := pmp~! € S Then
Vo = (apmp™)p = v for all v € T, so ¢ is onto. Then 1) is a permutation isomorphism
since (am)p = (), = (ap)(my) for all @ € Q and 7 € S
Let g € G. Then

Y(g¥) = 1y = (ag)e = () (98) = v(g0)

for all v € I', so gy = g0 for all g € G. Thus ¢|g = 0.

Let n € Ngao(G) and h € H. Then there exists a ¢ € G with gf = h, so (¢,) " hi), =
Yp-10gn = Yp-14, € G = H, s0 ¢, € Ngr(H). Conversely, let n € Ngr(H) and g € G.
Then n = 1,y for some n’ € S, and again, V-1 = n"",n € H = Gip, so n'“'gn’ € G,
which implies that n" € Nga(G). Thus Nge(G)) = Ner(H), as desired. O
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This next and last proposition is referred to in [14] but is not proved. It, like Proposition
1.2.1, is fundamental to the proof of the O’'Nan-Scott Theorem.

Proposition 1.2.6. If G is a regular permutation group on §2, then G is permutation
isomorphic to Cga(G).

Proof. Let g € G. Define p, : G — G by z — zg and )\, : G — G by z — g 'x. Then
Py Ay € SY for all g € G. Let R := {p, : g € G} and L := {)\, : g € G}. Note that R
and L are both subgroups of S¢; in fact, R is the image of the right regular representation

of GG, and L is the image of the left regular representation of GG. I claim first of all that
L =Csc(R). Let A\, € L, p, € R and x € G. Then

ahgpn = (97 '2)pn = (¢ 2)h = g7 (zh) = g7 (zpn) = zpn)y,

so A, commutes with every element of R. Thus L < Cgc(R). Conversely, let 7 € Csc(R).
Then mp, = pym for all g € G, so (zm)g = (xg)w for all z,g € G. In particular, take
g ="' so that for all x € G, (zm)z~! = (xz~')7 = 17. But then

A1 = (Im)z = ((am)z™ )z = an

for all z € G, s0 m = A(1;y—1 € L. Thus L = Cgc(R).

Let a € Q. G is transitive and semiregular on ) by assumption, so ¢ : 2 — G defined
by ag — g is a well-defined bijection. Define ¢ : S® — S by 7 +— ¢~ l7p. It is routine to
verify that 1) is a permutation isomorphism of S onto S¢. Further,

z(gp) = z(¢ " gp) = (axg)p = g = xp,

for all 2,9 € G, so g = p, for all g € G. Then Gy = R, and it follows that Cge(G)y =
Csc(R) = L. Thus Cse(G) is permutation isomorphic to L. Moreover, note that if
¢ : Q — G were instead defined by ag +— ¢!, then the proof we just saw would carry
through, but we would get that GG is permutation isomorphic to L in place of R since we
would have that

-1

w(gY) = x(@  gp) = (™ g)p = g 'z = x),.

Thus G is permutation isomorphic to Cga(G). ]

1.3 Sylow Subgroups

Let p be a prime. A finite group G is a p-group if the order of GG is a power of p.

Proposition 1.3.1 ([20, p. 75]). If G is a nontrivial p-group, then Z(G) is not trivial.



Proof. Let G act on itself by conjugation. Let h € G. Then G, = {g € G : g~ thg = h} =
Cg(h). Since we then have that G\Cg(h) ~ 0g(h), h € Z(G) if and only if 0g(h) = {h}.
Then Z(G) is the union of the orbits of G containing only one element. Since the orbits
of G partition G, if {0c(h;)}ier is a disjoint collection of all orbits of G containing at
least two elements, then |G| = [Z(G)| + >_,c;10c(hi)|. If G = Z(G), then since G is
nontrivial, Z(G) is nontrivial, so we may assume that Z(G) < G. Then [ is not empty.
|G : Cg(hi)] = 10c(hi)| > 1 and G is a p-group, so p | |0g(h;)| for all i € I. Thus p | |Z(G)|
so Z(G) is not trivial. O

The equation |G| = |Z(G)|+>_,,lG : Ca(hi)], where {6 (hi) }ier is a disjoint collection
of all orbits of G’ containing at least two elements, is called the class equation of G.

Proposition 1.3.2. If G has order p* where p is a prime, then G is abelian.

Proof. By Proposition 1.3.1, Z(G) is not trivial, so Z(G) has order p or p?. Assume for
a contradiction that Z(G) has order p. Then G/Z(G) also has order p, so is cyclic. Let
Z(G)a be a generator, and let g,h € G. Then g = xa™ and h = ya™ for some positive
integers m and n and for some x,y € Z(G). Then gh = xa™ya" = ya"xa™ = hg since
z,y € Z(@G), so G is abelian, a contradiction. Thus Z(G) has order p?, so Z(G) = G and
G is abelian. O

Theorem 1.3.3 (Cauchy, [20, p. 74]). If G is a finite group and p is a prime where p
divides the order of G, then G contains an element of order p.

Proof. First suppose that G is abelian. Write |G| = pn, where n > 1. The proof is by
induction on n. If |G| = p, then G is cyclic and so contains an element of order p. Suppose
that the result is true for some n > 1. Let g € G with order m > 1. If p | m, then ¢g™/? has
order p, and we are done. So we may assume that p { m. Note that G/(g) is an abelian
group of order 2*. Since p { m and Z* is an integer, ™ must be an integer. But * < n
as m > 1, so by induction, G/(g) contains an element of order p, say (g)h. Then if h has
order k, ({g)h)* = (g) so p | k. Again, G contains an element of order p, and we are done.

Suppose that now that G is any finite group with p | |G|. The proof is by induction on
|G|. If p | |Z(G)], then since Z(G) is abelian, Z(G) contains an element of order p, and we
are done. Thus we may assume that p { |[Z(G)|. Then by the class equation, there exists
a g € G for which [G : Cg(g)] > 1 and p t [G : Cg(g)]. Since p | |G], p | |Ca(g)]. But

Ces(g) < G, so by induction, Cg(g) contains an element of order p, and we are done. [

Suppose that G is a finite group such that |G| = p*m where p is a prime and p{m. A
Sylow p-subgroup of G is a maximal p-subgroup of G. Since G must contain an element
of order p by Cauchy’s Theorem, every finite group has a Sylow p-subgroup. Clearly, if
P < G and |P| = p*, then P is a Sylow p-subgroup of G.
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Lemma 1.3.4 ([20, p. 78]). Let P be a Sylow p-subgroup of a finite group G. Then
Ng(P)/P contains no element of order p.

Proof. Suppose that Ng(P)/P does have an element of order p, say Pg. P(g) is a subgroup
of G since g normalizes P. Moreover, P < P(g) since if g € P, then Pg has order 1, a
|Pll{g

contradiction. Since ¢g? € P, the order of g is a power of p. Then |P(g)| = ﬁ is a

power of p, but this is a contradiction because P is a maximal p-subgroup of G. O]

Theorem 1.3.5 (Sylow, [20, p. 79]). Suppose that G is a finite group such that |G| = p*m
where p is a prime and p { m. Then every Sylow p-subgroup has order p*, and any two

Sylow p-subgroups are conjugate in G. Further, if n, is the number of Sylow p-subgroups
of G, then n, = 1(mod p) and n, | |G|.

Proof. Let P be a Sylow p-subgroup of G. Let Q := {g7'Pg : g € G}. Note that every
member of  is a Sylow p-subgroup of G since g~ 'Pg must also be a maximal p-group.
Let @, R € Q. Then @ acts on € by conjugation, and [0g(R)| = [Q : Qr]. But Q is a
p-group, so |0g(R)| = 1 or p | |0g(R)|. If |6g(R)| = 1, then ¢ 'Rqg = R for all ¢ € Q, so
Q) < Ng(R). Then RQ < G and |RQ)| = “gﬁg“, which is a power of p, so we must have that
R = RQ = Q as R and @ are both maximal p-subgroups of G. Take Q = P. If R # P,
then p | |#p(R)| by the above, and clearly 6p(P) = {P}, so 0p(P) is the only orbit of P

containing exactly one element. Thus || = 1(mod p).

Suppose that there exists a Sylow p-subgroup S which is not in 2. Again, S acts on 2
by conjugation, and if R € €, then p | |#s(R)| since R # S. But then p | ||, contradicting
|| = 1(mod p). Thus Q is the set of all Sylow p-subgroups of G. It follows that every
Sylow p-subgroup is conjugate in G and that n, = 1(mod p).

Since Gp ={g € G : g7'Pg= P} = Ng(P), n, = |Q| = |05(P)| = [G : Ng(P)]. Thus
n, | |G|. Moreover, |G| = |P|[Ng(P) : P][G : Ng(P)], but p { [Ng(P) : P] (by Lemma
1.3.4 and Cauchy’s Theorem) and p t n, = [G : Ng(P)], so p* | |P| as p* | |G|. But |P] is
at most p*, so |P| = p*. It follows that every Sylow p-subgroup has order p*, and we are
done. O

Proposition 1.3.6. Let P be a Sylow p-subgroup of a group G. Then Ng(P) is self-

normalizing in G.

Proof. Of course Ng(P) < Ng(Ng(P)). Let g € Ng(Ng(P)). P is a Sylow p-subgroup
of Ng(P), so g 'Pg is a Sylow p-subgroup of g"!Ng(P)g = Ng(P). Then there exists
an h € Ng(P) with P = h™'(g7'Pg)h, so P = hPh™' = g7'Pg. Thus g € Ng(P) and
Ng(P) = Ne(Ne(P)). O
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1.4 Subdirect Products

The following definitions can be found in [3]. Let G := G x G x -+ x Gy be a direct
product of groups G;. Let p; : G — G; be the projection map for each i. A group H is a
subdirect product of G if there exists an embedding ¢ : H — G such that ¢p; : H — G| is
an onto homomorphism for all 7. If H is actually a subgroup of GG, then of course we may
take ¢ to be the inclusion map, and we call the subdirect product H a subdirect subgroup
of G. If H is a subgroup of G and p;|y is 1-1 for all 4, then H is called a diagonal subgroup
of G (where H is not necessarily subdirect). Lastly, if H is a subgroup of G, then H is a
full diagonal subgroup of G if it is both a subdirect subgroup and a diagonal subgroup.
If h:= (hy, ha, ..., hy) is any element of a subgroup H of G, then

h = (h17h27 . 7hk) = (hplahp27 . ah’pk)

Thus H = {(hp1,...,hpx) : h € H}. If H is a full diagonal subgroup of G, note that p;| g is
then an isomorphism of H onto G; for each 7. Consequently, all of the G; must themselves
be isomorphic to one another.

For the next result, the proof of (i) is from [4], and the proofs of (ii) and (iii) are from

3]-

Lemma 1.4.1. Let G =T} x Ty x --- x T}, be a direct product of simple nonabelian groups
(k> 1). Let H be a subgroup of G and I :={1,... k}.

(i) If H is a full diagonal subgroup of G, then H is self-normalizing in G.

(1t) If H is a subdirect subgroup of G, then H is a direct product [[ H;, where H; is a full
diagonal subgroup of some subproduct HZ.GIJ_ T; such that I is partitioned by the I;.

(i5i) If H is a nontrivial normal subgroup of G, then H = HjeJTj where J is some
nonempty subset of I.

Proof. (i) Define v; := (py|z)~'p; for each ¢ € I. Then each ~; is an isomorphism of Tj
onto T; since H is a full diagonal subgroup of G. Note that 7, is the identity on 77. Now, if
h € H then hp, =t for some t € T}, and hp; = (t(p1|z)')p; = t; for each i € {2,...,k}.
On the other hand, if ¢ € Ty, then t = hp; for some h € H, and ty; = t(p1|g) " pi = hp;
for each i € {2,...,k}. Thus

H = {(hp1,hpa,...,hpx) : h € H} ={(t,tya, ..., ty) : t € T1 }. (1)

Let n = (t1,t9,...,tx) € Ng(H). Fixi € {2,...,k} and let x € T;. Then x = t~; for some
t € Ty and h = (t,tye,...,t7) € H by (1). Note that since n € Ng(H),

(t7 "ttty (ty2)ta, - .ot (ty)tk) =~ 'hn € H.

12



Again by (1) we must have that t;'(ty;)t; = (t]'tt1)7, and v; is a homomorphism, so
(tlﬁ/,)_l(t’y,)(tl’}/n = (tl_lttl)’}/z = t;l(t’%)tz Then (tl’%)tl—l S Z(,_TZ) since

(vt D = ((tya)t; ) (t) = () ((Bya)E ) = 2((tya)t; )

and z € T; was arbitrary. But Z(T;) is trivial since T; is simple and nonabelian, so t; = t17;.
As this can be done for all i € {2,...,k},

n = (tl,tg,...,tk) = (tl,tl’}/g,...,tl”)/k) € H.

Thus Ng(H) = H, as desired.

(ii) The proof is by induction on k. If k = 1, then H =T} := H;. Suppose that k > 1.
Choose S C I to be minimal such that D := HN[[,.¢T; # {1}. H is clearly not trivial so
|S| > 1. T],es 15 is a normal subgroup of G so D is a normal subgroup of H. Then Dp; is
a normal subgroup of (H)p; = T; for all i € S. If Dp;, is trivial for some i, € S, then the
io~th component of every (nontrivial) element of D is 1. But then H N[[;c s\ 1,y Lo # {1},
contradicting the minimality of S. Thus Dp; is nontrivial for all ¢ € S, but T; is simple,
so Dp; = T; for all i € S. Moreover, if there exists a nontrivial d € ker(p;,|p) for some
io € S, then again, H N [];cg 1,y Ti # {1}, contradicting the minimality of S. Thus p;|p
is 1-1 for all i € S, and we conclude that D is a full diagonal subgroup of [[,_¢7;. Let
H,:=D and S:=1I,. If S =1, then we are done, so we may assume otherwise.

Let ps : G — [],c4 Ti be the projection map. D is a normal subgroup of H, so D = Dpg
is a normal subgroup of Hpg. By part (i), D is self-normalizing in [[, ¢ Ti, so D = Hps.

Let H := HN HieI\STi' Then H’ is a normal subgroup of H and clearly D N H' is
trivial. Let h € H, and let d € G be defined by

M“:{hmiﬁeﬁ

1  otherwise.

Clearly d € Hpg = D, so I/ := d"*h € DH = H. Then h/ € H' since for all i € S,
W' p; = (dp;)"*hp; = 1. Hence, h = dh € DH', so H = DH'. Tt follows that H = D x H'.

Let G’ := HieI\STi' Fix i, € I\ S, and let 1 #t € T;,. Since T;, = Hp;,, there exists
an h € H with t = hp;,. Let b’ be defined by

}m%:{hmiﬂel\&

1 otherwise.

This implies that
h=tp; ifie S,
(h,h_l)pi — P I ‘
1 otherwise.
Then Wh™' € Hps = D < H, so h' € H. Since h' € G', I/ € H’, and by definition,
Wp;, = hp;, =t # 1, s0 H'p;, is nontrivial. But H’ is a normal subgroup of H, so H'p;, is
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normal in Hp;, = T; , which is simple, so H'p;, = T;,. i, € I \ S was arbitrary so H' is a
subdirect subgroup of G’. By induction, H’ is a direct product [[ H; (j > 2) where H; is
a full diagonal subgroup of some subproduct [, I T; such that the I; partition I \ I;, and
we are done.

(iii) Proof is again by induction on k. If £ = 1, then we’re done since 77 is simple.
Suppose that k > 1. Let J :={i € I : Hp; # {1}}. H is not trivial so J # 0. H <G,
so Hp; A Gp; = T; for all i € J. But T; is simple, so Hp; = T; for all i € J. Thus H
is a subdirect subgroup of [],.;7;. By part (i), H is a direct product of full diagonal
subgroups of subproducts of [],.;7;. As in the proof of part (ii), let D := H N[[, ¢ T;
where S is an appropriate minimal subset of J. H QG so D d[[,.¢T;, but D is full
diagonal in [[,. 475 by the proof of part (ii), hence is self-normalizing in [[,.¢ 7}, and so
D = [],c¢T; by part (i). It follows from the remainder of the proof of part (ii) and from
induction that H = [],., T;. O

The following may appear to be quite simple but is immensely useful.

Proposition 1.4.2 ([3]). Let G be a group that normalizes N := T} X -+ x T}, where the
T; are all simple and nonabelian. Then G acts by conjugation on the set {1y, ..., Ty}

Proof. Let g € G. T; is a normal subgroup of N, so ¢~ 'T;g is a normal subgroup of
g~'Ng = N. Thus by Lemma 1.4.1(iii), g~'Tig = [[,.,T; where J is some nonempty
subset of {1,...,k}. But g'T;g is simple since T} is, so g 'T;g = T; for some j. Thus G
acts on {7171, ...,T}} by conjugation. O

The next result will be used both to prove the O’Nan-Scott Theorem and to make a
reduction to the problem of finite representability. The formulation and proof of the lemma
are mine, but its existence is implied by the proof of the O’Nan-Scott Theorem in [14].

Lemma 1.4.3. Let G be a group containing subgroups A and M such that A normalizes
M and M ~ T* where T is a nonabelian simple group and k is a positive integer. Let K
be a subgroup of M containing M N A such that K is also normalized by A. Suppose that
there exist groups X1, ..., X, which satisfy the following:

(i) M =X; X xXp;
(i) K=X1NKx---xX,NK;
(i1i) X, 1s simple for all | or X; N K is a full diagonal subgroup of X; for alll.

Then A acts by conjugation both on {Xi,..., X,} and {Xi N K, ..., X, N K}. Moreover,
ifa € A and a*X;a = X, then o 'X; N Ka = X; N K, and in the case where X, N K is
full diagonal for all l, if a'X; N Ka = X; N K, then a™'X,a = X;.
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Proof. Fixi € {1,...,n} and a € A. If X is simple for all [, then since M ~ T*  X; is also
nonabelian for all [. If X; N K is a full diagonal subgroup of X; for all [, then X; is a direct
product of isomorphic simple groups, but X; <M ~ T* so by Lemma 1.4.1(iii), X; ~ T™
for some m; € {1,...,k} for all [. Then X; N K ~ T, hence is simple and nonabelian for
all [. A normalizes M and K, so by Proposition 1.4.2, when X is simple for all [, A acts
on {Xy,...,X,} by conjugation, and when X; N K is a full diagonal subgroup of X for all
[, Aacts on {X;NK,..., X, N K} by conjugation. Thus A acts by conjugation on both
sets in either case if we can prove the second claim of the lemma.

Suppose first that a' X;a = X;. Then a ' X; N Ka =a'X;aNna'Ka = X; N K since
A normalizes K.

Now suppose that ¢ 'X; N Ka = X; N K and that X; N K is a full diagonal subgroup
of X; for all [. For notational ease, let X := X;. We may write M =T} x --- x T}, and
X =T, x---xT,, forsomem € {1,...,k} where T} ~ T for all . XN K is a full diagonal
subgroup of X, so for all [ € {2,...,m}, there exist isomorphisms ~; : 73 — 7} such that
XNK = {(tty,...,tym) : t € T1} (see equation (1) in the proof of Lemma 1.4.1(i)).
Let 1 # z € T; where [ € {1,...,m}. Note that a 'Tja = T} for some s € {1,...,k} by
Proposition 1.4.2 since A normalizes M; in particular, a=*xza € T,. There exists an element
t € Ty with ty, =z, so (t,t7, ..., tym) € XNK. Then a (¢, 79, ..., tym)a € X;NK < X
X is some subproduct of the simple factors of M, so ¢ 'za is in one of these simple factors,
but 1 # a~'xa is already in T, so this simple factor must be T;. Thus T, < X ;. It follows
that if I; and I; denote the set of indices of the simple nonabelian factors of X; and X;
respectively, then a maps {7, : s € I;} to {7 : s € I;} by conjugation; in fact, this map is
a bijection as it is onto by symmetry and is clearly 1-1. Thus ¢ ' X;a = Xj. O

Here is another quick application of Lemma 1.4.1. A proper normal subgroup N of
a group G is said to be a maximal normal subgroup of G if N is the only proper normal
subgroup of G' containing N. Let N < G. Note that N is a maximal normal subgroup
of G if and only if G/N is simple since G and N are the only two normal subgroups of
G containing N if and only if G/N has exactly two normal subgroups, namely, G/N and
N/N.

Lemma 1.4.4 ([8, p. 113]). Let H be a group with distinct normal subgroups Hy, ..., Hy
satisfying ﬂle H; = {1} such that for each i, H/H; ~ T; where T; is a nonabelian simple
group. Then H ~ T} X -+ X T},.

Proof. The proof is by induction on k& > 1. The result is trivial if £ = 1. Suppose
that £ > 1. Let Hy = ﬂf:_f H; < H. Then clearly Hy/Hy,...,Hy_1/Hy are distinct
normal subgroups of H/Hy. Moreover, if Hyg € ﬂ;:ll H;/Hy, then g € ﬂi-:ll H; = Hy, so
N H;/Hy = {Hy}, and also (H/H,)/(H;/Hy) ~ H/H; ~ T; for all i € {1,...,k —1}.
Thus H/Hy ~ T, X - -+ X T_1 by induction.
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Let N be a maximal normal subgroup of H/H,. Then by part (iii) of Lemma 1.4.1,
N is a direct product of some of the 7;. But in order for N to be maximal, N must
then have the form 77 x -+ x T;_1 X T;4q X -++ X Ty for some i. It follows that H/H,
has exactly k& — 1 maximal normal subgroups. However, since H/H; is simple for all
i € {1,...,k} and the Hy,..., Hy are all distinct, H has at least k& maximal normal
subgroups (namely, the H;). Thus H is not isomorphic to H/Hy, so Hy # {1}. Then if
Hy < H,, Hy= HyNH;, = ﬂle H; = {1}, a contradiction; it follows that Hy, < HyHy<H,
but Hy is maximal normal in H, so H = HiH,. Since HyNHy = {1}, H ~ H; x Hy. Then

Hoﬁ (HO X Hk)/Hk :H/Hk ZT]C,

and
Hk ~ (HO X Hk)/HO ZH/HO ﬁTl X X kal-

Thus H ~ T X --- x T}, as desired. O

1.5 Minimal Normal Subgroups

Let G be a group. A nontrivial normal subgroup N of G is said to be a minimal normal
subgroup of G if N is the only nontrivial normal subgroup of GG contained in N. If G is
finite and nontrivial, then G is guaranteed to have minimal normal subgroups.

The next few results illuminate the structure of a minimal normal subgroup.

Proposition 1.5.1. Any two distinct minimal normal subgroups of a group G must in-
tersect trivially. It follows that any two distinct minimal normal subgroups centralize each

other.

Proof. Let N; and N, be any two minimal normal subgroups of G. Then N; N N, is
normal in G, but Ny N Ny < Ny and Ny N Ny < Ny, so if Ny N Ny is not trivial, then
N1 = N1 N Ny = Ny by the minimality of N; and N,. Thus two distinct minimal normal
subgroups intersect trivially. Moreover, if N7 and Ny are distinct minimal normal subgroups
of G, then [Ny, Ny] < Ny N Ny = {1}, so Ny and N, centralize each other. O]

Recall from Proposition 1.4.2 that G acts by conjugation on {771, ..., T} if the T; are
all simple and nonabelian and if 7} x --- x T} is normalized by G.

Proposition 1.5.2 ([3]). Let G be a group. Suppose that N := T, x --- x Ty is a normal
subgroup of G where the T; are all simple and nonabelian. Then G acts transitively by

conjugation on {1y,..., Ty} if and only if N is a minimal normal subgroup of G.

Proof. Suppose that G is transitive. Let M be a nontrivial normal subgroup of G with

M < N. Then M < N, so by Lemma 1.4.1, M = HjeJTj where J is some nonempty
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subset of {1,...,k}. Let j, € J. Since the action of G is transitive, given ¢ € I, there
exists a g; € G such that T; = g, lTjo gi- M is a normal subgroup of G, so T;, < M implies
that T; < M for alli € {1,...,k}. Thus N = M, so N is a minimal normal subgroup of
G.

On the other hand, suppose that G is not transitive on {77,...,T;}. Relabelling the
indices as needed, let {717, ...,T,,} be an orbit of the action (so we must have that m < k),
and let M := Ty x---xTy,. Then forallg € Gandi € {1,...,m}, g 'Tig C{T\,...,Tn}.
Thus M is a normal subgroup of G, but {1} # M < N, so N is not a minimal normal
subgroup of G. O

We have just seen that a minimal normal subgroup can be a direct product of isomorphic
simple groups (they are isomorphic because they are conjugate). It turns out that, at least
in a finite group, every minimal normal subgroup is a direct product of isomorphic simple
groups. This will take some work to prove.

A subgroup H of G is characterstic in G, denoted by H char G, if Hy = H for all v €
Aut(G). To show that H char G, it suffices to show that Hy < H for all v € Aut(G) (since
then Hy~! < H, which implies that H = (H~~')y < H7). Note that since conjugation by
an element of GG is an automorphism of G, H char G implies that H is normal in G (the
converse is not necessarily true).

A nontrivial group G is characteristically simple if G has no proper nontrivial charac-

teristic subgroups.
Proposition 1.5.3. Let G be a group.
(i) If H char K and K <G, then H < G.
(i1) If N is a minimal normal subgroup of G, then N is characteristically simple.

Proof. (i) Let g € G and let ¢, be the automorphism of G which conjugates by g. K <G
so Ky, = K, but then ¢ |x € Aut(K). Since H char K, Hp,|x = H; thatis, g 'Hg = H
for all g € G. Thus H < G.

(i) Suppose that H char N. N is normal in G so by part (i) we have that H <G. But
N is minimal normal and H < N, so we must have that H = N or H = {1}. Thus N is
characteristically simple. O]

Theorem 1.5.4 ([20, p. 106]). A finite characteristically simple group G is a direct product

of isomorphic simple groups.

Proof. Let N be a minimal normal subgroup of G with minimal order. Put Ny := N. Let
H := N; X Ny x -+ x Nj be the subgroup of GG of largest possible order of this form, where
k>1, N; >~ N for all i and N; <G for all <. Note that H < G.
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Suppose that H char GG. Since H is not trivial and G is characteristically simple, H = G.
But then N must be simple, for if {1} # M < N, then M <INy X Ny X --- X Ny = G and
by the minimality of N, M = N. Thus G is a direct product of isomorphic simple groups.

Assume now for a contradiction that H is not characteristic in G. Then for some
v € Aut(G) and for some j, Nyy £ H. N; <G, so N;y <Gy = G. Moreover, N;y must
be minimal normal in G, for if N;v properly contains a nontrivial normal subgroup N’ of
G, then |N'| < |N;y| = |N;| = |N|, contradicting the minimality of the order of N. Now,
N;vN H is a normal subgroup of G contained in N;v, but N;y € H, so by the minimality
of Ny, NjynN H = {1}. Then since N;y >~ N; ~ N, N;v x H is a subgroup of G of the
same form as H with larger order, a contradiction.

O

Note that Theorem 1.5.4 can be generalized to infinite groups that contain at least one
minimal normal subgroup, but only the finite version of the result is needed. Next is the

result we are looking for.

Corollary 1.5.5. A minimal normal subgroup of a finite group is a direct product of
1somorphic simple groups.

Proof. Follows immediately from Proposition 1.5.3(ii) and Theorem 1.5.4. [

The socle of a group G, denoted by soc(G), is defined to be the subgroup generated by
the set of all minimal normal subgroups of G, where soc(G) := {1} if G has no minimal
normal subgroups (which can only occur if G is infinite or trivial). Note that soc(G) is a
normal subgroup of G.

Every minimal normal subgroup of a finite group G is a product of isomorphic simple
groups. More often than not, we are concerned with the case when all of these simple groups
are nonabelian. The next result gives a handy condition for proving when a product of

simple nonabelian groups is actually the socle of a finite group G.

Proposition 1.5.6. Let G be a finite group with subgroup M := Ty x --- x T} where
k > 1 and T; is simple and nonabelian for all i. Then M is the socle of G if and only if
Ce(M) ={1} and M < G.

Proof. Suppose that M is the socle of G. Of course M < G. Moreover, this implies that
Ca(M) < G. If Cq(M) is nontrivial, then Cg(M) must contain some minimal normal
subgroup of G, say N. N dsoc(G) = M, so N = [],.,;T; for some () # J C I by Lemma
1.4.1. In particular, T; < Cg(M) for any j € J. But Cq(M) < Cq(T;), so T; < Ca(T}), a
contradiction since 7 is nonabelian. Thus Cq(M) = {1}.

Conversely, suppose that Co(M) = {1} and M < G. Let N be a minimal normal

subgroup of G. Then NN M <G and NN M < N, so either N < M or NN M = {1}.
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But if NN M = {1}, then [N, M] < NNM = {1}, s0o N < Cg(M) = {1}, a contradiction.
Thus N < M, which implies that soc(G) < M. G acts on {T4,...,T}} by conjugation
by Proposition 1.4.2; let Oy, ..., O,, be the orbits of this action. For each j € {1,...,m},
let Nj := [0, Ti- Then g 'N;g = N; for all j and g € G, so N; <G for all j. But G
acts transitively on O; for each j, so N; is a minimal normal subgroup of G for each j by
Proposition 1.5.2. Thus M = N; X --- x N, < soc(G), and we are done. O

1.6 Wreath Products

Let H and K be groups. A group action of K on H is a homomorphism ¢ : K — Aut(H).
K is then said to be an operator group on H. Equivalently, K is an operator group on H
if H is a K-space for which the action also satisfies (hi1ho)* = h¥h% for all hy, he € H and
ke K.

If K is an operator group on H, then the semidirect product H x K is the set H x K
with multiplication defined as follows:

(hl7 k’l)(hg,k’g) = (hlhgl_l,klk’g) for all hl, hy € H and k’l, ko € K,

(where the k;' is required for associativity). Then H x K is a group with identity (1, 1),
in which (h,k)™! = ((h~1)%, k7). Note that H < H x K.

A group G is an internal semidirect product of subgroups H and K if H4G, G = HK,
and H N K = {1}. We can define a group action of K on H by h* := k~thk for all k € K
and h € H; it is straightforward to show that G ~ H x K with this action. On the other
hand, if G = H x K, define H* := {(h,1) : h € H} and K* := {(1,k) : k € K}. Then it
is easy to see that GG is the internal semidirect product of H* and K*; of course, H ~ H*
and K ~ K*. Thus these two concepts of a semidirect product are equivalent, and I will
use either form as needed.

Suppose that G is an operator group on A, and suppose that H and B are groups with
G ~ H and A ~ B. Let ¢ and ¥ denote the isomorphisms from G onto H and A onto
B respectively. Then it is routine to verify that H is an operator group on B with action
defined by b" := (a9)v) where b = a) and h = g¢. It follows that A x G ~ B x H.

The following definitions can be found in [8, p. 46]. Let G and A be groups, and let €2 be
a G-space. Let B := A% = {b: Q — A}. Define multiplication on B by a(bV) := (ab)(ab’)
for all b,b' € B and a € . The multiplication is clearly associative, B has identity 1p
where alp :=1 for all @ € 2, and b € B has inverse b~! defined by ab™! := (ab)™! for all
a € Q). Thus B is a group.

Define an action of G on B by ab? := (a9 )b forall g € G, b e B and o € Q. It is
routine to verify that b' = b, b9 = (b9)", and (bb')? = b9b'9 for all b,&’ € B and g,h € G,
so we do actually have an action of G on B. Then the wreath product of A and GG, denoted
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by A wrq G, is defined to be the semidirect product B x G = A? x G. B is called the base
group of the wreath product.

Note that if € is finite, then we can take G to act on Q = {1,...,|Q|}, so that Awrq G ~
Al 5 G, Then g acts on (ay,. .. ,ajo|) by moving a; to the i%-th coordinate, which is

written as (a1,...,a10/)? = (a-1,...,0,,,-1). To see how this notation works (as it is

|27
counter-intuitive), I will quickly verify that we still have an action. Let g,h € G and
(a1,...,a1) € ARl Then ;-1 is in the i-th coordinate of (ay, ..., aqq)?, so h will move

a;,-1 to the ¢"-th coordinate. Thus a,,-1,-1 is in the i-th coordinate of ((a1, ..., ajg)?)", so

(alg—l, .. ’a\ngfl)h — (a1h71g71 Yo ,a|Q|h71971) = ((Ll(gh)A, ... ,U,|Q‘<gh)—1),

from which it follows that ((a1, ..., ajq)?)" = (a1, ..., ag)"
The next result is an exercise in [8, p. 114].

Proposition 1.6.1. Let T' be a nonabelian simple group, and let Q = {1,...,k} where
k> 1. Then Aut(T*) ~ Aut(T) wrq Sy.

Proof. By the above, we have that Aut(T) wrq Sy, =~ (Aut(T))* x Sj. Let
T, :={(1,...,t,...,1) : t € T,t in i-th coordinate},

so that TF = Ty x -+ x Ty. Let (ay,...,ap)7 € (Aut(T))* x S), (using this notation for
simplicity). Define ¢y, _apr @ T — T% by (t1,...,t) — (brr-1G1n-1, .oy bpr-1Qpr—1).
First, I claim that ¢(q,,  a)r € Aut(T*). Since a; is a homomorphism for all 4, clearly
Y(ar,....ap)x 15 also a homomorphism. Suppose that (ti,...,tx) € ker(d(a,.. . ap)x). Then
(tim-1G1p-1, .oy lpn—1ape—1) = (1,...,1), 80 t; € ker(a,) = {1} for all . Thus ¥(q,,.. a)x 15
1-1. Lastly, let (¢1,...,tx) € T* and define x; := t;za;' € T for all j. Then

(tl, Ce ,tk) = (:L‘lﬂ—lalﬂ—l, Ce ,.Z'kﬂ-—lakﬂ-—l) = ($1, e axk)w(al,...,ak)m

SO Y(ay,...,ar) 15 onto, and we are done.
NOW, we may define ¢ : (Aut(T))* x S, — Aut(T*) by (a1, ...,a1)T = Vay....ap)r- Let
(ay,...,a})7" € (Aut(T))* x Sy, and (t1,...,t) € T*. Then

(tla ) a1,..,,ak)ﬂw(a’l,...,a;)w’

(t a=1017r—1, . . tk’ﬂ—lakw—l>w(a’1,...,a;€)7r’
= (t 11, —1QA /- 1,r_1a17r, Tyeo- ,tkﬂ-/—lﬂ.—lakﬂ-/—lﬂ.—laggﬂ_/_l)
= (tl 1(11 (mm!)— 1a1(ﬂ7r/)—1ﬂ7 e ,tk(ﬁﬂ-/)flak(ﬂﬂ-/)flaz(ﬂﬁ,),1ﬂ>
= (tl, ) (a1d) ,..apa), )’

(tla ) (a1,...,ar)w(al,...,al )7’

so 1 is @ homomorphism.

20



Suppose that 1,

.....

(t, o ,t) = (t, .. ,t)lp(al ..... ag)T = (talﬂ—1, o 7takﬂ-—l>7

so a; is the identity on T; for all i. Let 1 # ¢t € T and fix i € {1,...,k}. If t* :=
(1,...,t,...,1) € T;, then

(1.t )=t =t =(1,...,t,....,1) €Ty

But t # 1, so im = i. As ¢ was arbitrary, 7 = 1. Thus % is 1-1.

Let a € Aut(T*). Since T; QT* T,a <T* but T =~ Tia, so Tia is simple. Thus for
each i, Tia = Tj for some j by Lemma 1.4.1. Let 7 : @ —  be defined by 7 — j if
Tia =1T;. Clearly m € Sy. Fixi e {1,...,k} andlett € T If (1,...,¢,...,1) € T}, then
there exists a unique (1,...,t,...,1) € T;; such that (1,...,¢,...,D)a=(1,...,t,...,1).
Define a; : T'— T by t — t'. Then a; € Aut(T) since al|r, : T; — T;; is an isomorphism.

Moreover,
(tb ) tk)’l/}(al ..... ag)m
tir—1Q10-1, s Chn—1Q g —1
( 1w 1m— km km )
(tlhrfl’ e t;wr 1)
(-1, 1,...,1) (1, Lt )
(1, . ,tlﬂ.—1, ey 1)a\TM_1 tee (1, c. ,tkﬂ—l, RN 1)a]Tk7r_1
(tl, . ,tk)a
for all (t1,...,t;) € T*, so V(ar,....ap)r = @ and 1) is onto. O

I now investigate one way to turn a wreath product into a permutation group. Let
G and H be groups acting on sets A and I" respectively. Let W be the wreath product
H wra G = B x G where B = H?. Let Q := I'®. Define an action of W on ) as follows:
for each (b,g) € W and a € Q, let a®9 : A — T be defined by

-1

§— ((69 Ha)® °.
Then for all (b, g),(b',¢') € W and § € A,
st = (5104)(51)13 = d«

and .
5(a®9)¥9) = (597 qb:9))07 Y

(69797 @)@ T e )

— (5997 )8 @)
o/ v? ' 99")

ab9)t'.g")
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so we do have an action of W on 2. This action is called the product action of W on 0.

The next proposition tells us that W acts as a permutation group under the product
action exactly when both G and H act as permutation groups. This result is mentioned
in [8, p. 50].

Proposition 1.6.2. Let G and H be groups acting on sets A and I' respectively, where
IT| > 2. Then the product action of W = H wra G on Q =I' 2 is faithful if and only if
the respective actions of G and H on A and I are faithful.

Proof. Suppose that the product action of W = H wra G on Q = I'® is faithful and that
69 = 69 for all 6 € A where g,¢' € G. Then

1

5a1B:9™Y) — 594 — 59 v = 5189 )

for all 6 € A, so at9™) = o9 for all a € Q, but the action is faithful, so we must
have that (1,¢g7') = (1,¢7!), hence that g = ¢’. Thus the action of G on A is faithful.
Suppose now that 7" =~ for all v € T where h, h' € H. Define b, € B by § — h. Define
by, similarly. Then for all § € A,

Salonl) = (504)5bh = (6a)" = (5a)h/ = (da)%w = Saowb),

so altml) = w1 for all o € . Tt follows that h = &/, so H is faithful on T
On the other hand, suppose that the respective actions of G and H on A and I' are
faithful, and suppose that a®9 = o®9) for all o € Q, where (b, g), (V',¢') € W. Then

(5g71a)59—1b _ (5g/7la)6g_ v

for all 6 € A and o € Q. Let v € I' and define ., € Q2 by § — 7. Then for each § € A,

-1 _ —1 _ 1—1 _
759 b _ (59 la’y)(gg b _ (59/ la’y)(gg b _ "}/ag b/'

Since v was arbitrary and H is faithful on T, it follows that 69 'b = 69 ' for all § € A.
But then 69 'a = 69 'a for all § € A and o € Q. If 69 # §9 " for some 6§ € A,
then since |I'| > 2, there is an a € Q which will separate 69" and 697", contradicting
the above. Thus 69 = ¢ ' for all § € A, but G is faithful on A so g = ¢. Lastly,
6b9 = 59 b = 69 = §b9 for all 6 € A, which implies that b9 = b9, but ¢ = ¢/, so
b=10. O

Let us consider another type of wreath product called the twisted wreath product,
which is not quite a full generalization of a wreath product but is built from a wreath
product. The twisted wreath product was originally constructed by B.H. Neumann in [17],
but the constructions found in [24, p. 269] and [14] are my primary references.

22



Let G and A be groups where GG contains a subgroup H that is an operator group on
A, and let G act on itself by left multiplication (so that 2 = G). Let

uB:={b:G — A:(xh)b= (2b)" for all x € G,h € H}.

Then yB C B since 2 = G. In fact, yB < B: clearly 15 € yB, and if b,b' € iy B, then for
all x € G and h € H,
(zh)b~10 =

as desired. Moreover, note that if b € g B, then for all x,g9 € G,
wb =29 b= ((g7")"2)b = (ga)b,

so for all h € H,
(xh)b? = (gzh)b = ((g2)b)" = (xb7)".

Thus 9 € g B for all g € G and b € ygB, so we have an action of G on yB. The twisted
wreath product of A and G, denoted by A twry G, is defined to be the semidirect product
uB x G. pB is called the base group of the twisted wreath product. Note that when
H = {1}, gB = B and the twisted wreath product is a wreath product.

A brief aside on transversal set notation: let H < (G, and let L be a set of left transver-
sals of H in G. Then every element x € G can be written uniquely as x = Th, for some
h, € H where T € L. Whenever I refer to transversal sets, this notation will be used (with

the appropriate adjustment for right transversal sets).

Proposition 1.6.3 ([24, p. 270]). The base group yB of A twry G is isomorphic to
[Lic; Ai where A; = A for alli € I and I has the same cardinality as the set of cosets of
H inG.

Proof. Let {g; : i € I} be a set of left transversals of H in G. Let i € I, and let
A :={gib:be yB}. A; < Asince 1 = g;1p € A; and (g;b) "1 (g;V') = g;(b71V) € A, for all
b,b € g B. On the other hand, let a € A. Define b, : G — A by x — a". b, € ;B since if
h € H, then

(zh)by = (T(hgh))b, = a™" = (a"=)" = (xb,)".

But a = ¢g;b, € A;, so A=A, for all ¢ € I.

Now for each b € yB, define f, : I — J,.; 4i by i — gib € A;. Then f, € [[,.; A
for all b € gB. Define a function mapping from zB into [[,.; 4; by b — f,. It is a
homomorphism since for all i € I,

ifoy = gi(DV') = (gib)(g:b") = ifyify = ifofy.
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It is 1-1 since if f; is the identity of [],.; A;, then g;b = if, = 1 for all i € I (where 1 is the
identity of A; = A for all i € I), which implies that zb = (Tb)"* = 1" = 1 = 215 for all
r € G,s0b=1p. To see that it is onto, let f € [[,.; A;. Thenif € A; for alli € I, so for
each i € I there exists a b; € g B with if = g;b; . Define by : G — A by z +— (Tb;)" when
Z = g;. Thenify, = giby = g;b; = if for alli € I so f,, = f, and it is routine to verify that
by € g B (mimic the proof that b, € yB above), so we are done. Thus yB ~[],.; 4;. O

In the notation of the above proof, let B; :={b € yB : g;jb=1forall j # i} foralli € I.
Then B; is the preimage of A; since b€ B; <= 1=gjb=jfyforall j #i < f, € A;.
Thus if I ={1,...,k}, then yB = By X --- X By, (internally).

1.7 Solvable Groups
Let G be a group. A solvable series of a group G is a sequence of subgroups
{1}:Gn§]Gn—1ﬁﬁGO:G

where G;/G,41 is abelian for all i € {0,...,n —1}. A group G is said to be solvable if G
has a solvable series.

The derived subgroup or commutator subgroup of G is G' := |G, G], which is a char-
acteristic subgroup of G since for any v € Aut(G), [g,h]y = [g7, hy] for all g,h € G. In
particular, G’ is a normal subgroup of G. The higher commutator subgroups of G, denoted
by G, are defined inductively by G(© := G and G0*+Y := (G®)’. The series

<G < <6V <60 =G

is called the derived series of G.

The following is a collection of well-known results about solvable groups.
Proposition 1.7.1. Let G be a group.
(i) If H <G, then G/H is abelian if and only if G' < H.

(i) If {1} = G, <Gy < --- <Gy = G is a solvable series, then G < Gy for all
ie€{0,...,n}.

(i4i) G is solvable if and only if G™ = {1} for some n > 0.

(i) If G is solvable, then any subgroup or homomorphic image of G is solvable; in par-
ticular, every quotient of G is solvable.

(v) If H is a normal solvable subgroup of G and if G/H is solvable, then G is solvable.
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(vi) If H and K are solvable subgroups of a group G where H normalizes K, then HK

1s solvable.

Proof. (i) G/H is abelian <= hHgH = gHhH forall g,h € G <= [g,h] = g *h~gh €
H forall h,ge G <— G' < H.

(ii) The proof is by induction on i > 0. If ¢ = 0, then the result is trivial. Suppose
that G@ < @, for some i > 0. Since G;/Gis1 is abelian, G, < G;;1 by part (i). Then
G = (GWY < G by induction, so GV < Gy, as desired.

(iii) Suppose that G is solvable, and let {1} = G,, <G,,—1 <--- <Gy = G be a solvable
series for G. Then by part (ii), G™ < G,, = {1}, as desired.

Suppose that G™ = {1} for some n > 0. G®/GU+V) is abelian by part (i) since
G+ = (GWY. Thus the derived series is a solvable series for G, and G is solvable.

(iv) Let H < G. If H® < GO, then H+Y) = (H®W) < (GW) = G so by induction
H® < GO for all i > 0. Since G is solvable, G™ is trivial for some n, so H™ is also
trivial. Thus H is solvable.

Let ¢ : G — H be an onto homomorphism. (G¢)® = G@Wy for all i > 0 since
[gp, ho] = [g,h]p for all g,h € G. Then H™ = (Gp)™ = GMp = 1p = 1, so H is
solvable.

(v) Let ¢ : G — G/H be the natural map. G/H is solvable so (G/H)™ = {1} for
some n > 0. Then GMWyp = (Gp)™ = (G/H)™ = {1}, so G™ < ker(p) = H. H is
solvable, so H™ = {1} for some m > 0. Similar to the proof of part (iv), it can be
shown by induction that for a fixed i > 0, GU+) < (G@)W) for all j > 0. But then
Gt < (GM)m < HM) = {1}, Thus G is solvable.

(vi) H normalizes K so HK /K is isomorphic to H/H N K by the second isomorphism
theorem. H is solvable so H/H N K is solvable by part (iv). Thus HK/K is solvable, but
K is solvable, so HK is solvable by part (v). O

Let p be a prime. An elementary abelian p-group is an abelian group G in which every
nontrivial element has order p. Then G is a finite elementary abelian p-group if and only
it G ~Zy,x - XLy

Proposition 1.7.2 ([20, p. 105]). If N is a finite solvable minimal normal subgroup of a

group G, then it is an elementary abelian p-group for some prime p.

Proof. N is a minimal normal subgroup of G, so it is characteristically simple by Proposi-
tion 1.5.3. Moreover, if N = N, then since N is solvable, N must be trivial, a contradiction.
Thus N is abelian since N’ char N implies that N’ is trivial. Let P be a Sylow p-subgroup
of N. Since N is abelian, P is normal in N and hence is the only Sylow p-subgroup of
N. If v € Aut(N), then P is also a Sylow p-subgroup of N, so Py = P. Thus P char
N,so P = N and N is a p-group. Let M :={n € N : n? = 1} < N; note that M is an
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elementary abelian p-group. Let n be a nontrivial element of M. Then for all v € Aut(N),
n7y has order p, hence is in M. Thus M char N, but M is not trivial as N contains an
element of order p by Cauchy’s Theorem, so M = N. [

1.8 Nilpotent Groups

Let G be a group. A central series of a group G is a sequence of subgroups
{1} =Gy <G, <--- 4G, =G

where G;11/G; < Z(G/G;) for all i € {0,...,n — 1}. A group G is said to be nilpotent if
G has a central series. Clearly a nilpotent group is solvable.

The higher centers of G, denoted by (*(G), are defined inductively by ¢°(G) := {1}
and ("MY(G) :={z € G : [x,g] € ¢/(G) for all g € G}. ¢(G) < G for all i since for all
g €G,

[y, 9] = [y, 2][z, gylly, 9] and [z7", g] = [&, gz~ "],

The higher central series of G is
(1} =) < @) < <CHG) < -
Note that ¢'(G) < G for all ¢ since for all g, h € G,
[h~txh, g] = [x, k][, hyg].

Moreover (71 Q) /CH(G) = Z(G/¢H(Q)) for all i since ¢'(G)z € (HG)/C(G) — x €
CTHG) <= [z,9) € (Y(Q) forall g € G < ("(G)xrg = ("(G)gz for all g € G —
C(G)x € Z(G/C(G)). Note also that (1(G) = Z(G).

The lower centers of G, denoted by 7;(G), are defined inductively by ~,(G) := G and
Yi41(G) = [7(G),G]. Clearly ~;(G) < G for all i, which implies that v;11(G) < 7;(G)
for all i. Note that if x € v;(G), then [z, g] € 7i11(G) for all g € G, so i(G)/7i+1(G) <
Z(G/7i4+1(G)) for all i. The lower central series of G is

G=%(G)Z2n(G) = =mwm(G) =
The following is a collection of well-known results about nilpotent groups.

Proposition 1.8.1. Let G be a group.

(i) Let {1} = Gy < Gy < --- < G, = G be a central series in a nilpotent group G. Then
G; < Q) and v(G) < Gy for all i € {0,...,n}.

(i1) G is nilpotent if and only if G = ("(G) for some n > 0.
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(111) G is nilpotent if and only if {1} = v,(G) for some n > 0.
() If G is nilpotent, then any subgroup or homomorphic image of G is nilpotent.

(v) If H is a normal subgroup of G contained in Z(G) and if G/H is nilpotent, then G
1s nilpotent.

(vi) If G is a finite p-group, then G is nilpotent.

(vii) If G is nilpotent and N is a nontrivial normal subgroup of G, then N intersects
nontrivially with Z(G).

(viit) If G is nilpotent, then no proper subgroup of G is self-normalizing.

(iz) If G is a finite nilpotent group and p | |G|, then G has a unique Sylow p-subgroup P.

Proof. (i) First I show that G; < (*(G) for all i; the proof is by induction on i. If i = 0,
the result is trivial. Suppose that the result is true for some ¢ > 0. Let z € G;,;. Since
Git1/Gi < Z(G/G,), |x,g] € G; for all g € G, so [z,g] € ('(G) for all g € G by induction.
Thus = € ("T(G).

Now, I show that v;(G) < G,,_; for all i; the proof is again by induction on ¢ > 0. If
i = 0, the result is trivial; suppose that it is true for some i > 0. Let x € ;(G). Then
x € G,,_; by induction, so [z, g] € [G_i, G] < Gp_i_1 since Gy, /Gr_i1 < Z(G/Gpn_i_1).
It follows that v;41(G) < Gp—(it1)-

(ii) If G is nilpotent, then G = ("(G) for some n > 0 by part (i), and if G = ("(G) for
some n > 0, then the higher central series of GG is a central series, so G is nilpotent.

(iii) If G is nilpotent, then {1} = v, (G) for some n > 0 by part (i), and if {1} = 7, (G)
for some n > 0, then the lower central series of GG is a central series, so G is nilpotent.

(iv) Let H < G. If (H) < %(G), then 71 (H) = [vi(H), H] < [%(G), G] = 7i41(G).
Thus v;(H) < (G) for all i > 0 by induction. Then if G is nilpotent, H is clearly nilpotent
by part (iii).

Similarly, if ¢ : G — H is an onto homomorphism, then ;(Gy) < v;(G)p for all i > 0,
so for some n > 0, we have that v;(H) = v(Gy) = %(G)p = {1}¢ = {1}. Thus H is
nilpotent.

(v) G/H is nilpotent, so we have a central series

SO
{I}9H=Gy<G1<--- <G, =G.

If z € Gyyq, then (G;/H)(Hz) € Z(G/H)/(G;/H)), so H[z,g] € G;/H for all g € G.
This implies that [z,g] € G; for all ¢ € G, so Gi11/G; < Z(G/G;) for all ¢ > 0. But
H < Z(G), so we have a central series for G.
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(vi) By induction on |G|. If G = {1} the result is trivial. Suppose that |G| > 1. Then
Z(G) is not trivial by Proposition 1.3.1, so G/Z(G) is nilpotent by induction. By part (v),
G is nilpotent.

(vii) By part (ii), G = ("(G) for some n > 0. Then N < ("(G), but N N¢%(G) = {1},
so there exists a least positive integer 7 such that N N ¢Y(G) # {1}. Let g € G and
1# 2z € NNC(G). Then [z,g] € N since N <G, but [z,g] € ¢"(G) by definition, so
[z,9] =1 since NN ¢™YG) ={1}. Thus z € Z(G), but z € N, so NN Z(G) # {1}.

(viii) Let H < G = 70(G). Since G is nilpotent, v,(G) = {1} < H for some n > 0,
so there is a least positive integer ¢ with v;11(G) < H but +;(G) ¢« H. Then [v(G), H| <
:(G), G] = vi4+1(G) < H, so if © € v,(G), then [z,h] € H for all h € H. It follows that
7i(G) < Ng(H). Thus if H = Ng(H), then v;(G) < H, a contradiction, so H < Ng(H).

(ix) If Ng(P) < G, then Ng(P) < Ng(Ng(P)) by part (vii), but this contradicts
Proposition 1.3.6, so Ng(P) = G. Thus P < G and P is the unique Sylow p-subgroup of
G. O

Let G be a finite group with |G| = p"k for some prime p where p 1 k. G is said to be
p-nilpotent if there exists a normal subgroup N of G with |N| = k.

Proposition 1.8.2. If G is a finite nilpotent group, then G is p-nilpotent for all primes p
dividing the order of G.

Proof. By Proposition 1.8.1(ix), G has a unique Sylow p-subgroup for each prime p dividing
the order of G. Fix such a prime and write |G| = p"k where p{ k. Let N be the product
of all of the Sylow g-subgroups of G such that ¢ # p. Then N <G and |N| = k. Thus G
is p-nilpotent. O

Let P be a finite p-group and let n be the largest order of an elementary abelian p-
subgroup of P. The Thompson subgroup of P, denoted by J(P), is defined to be the
subgroup of P generated by all of the elementary abelian p-subgroups of P of order n.
Note that if P is nontrivial, then J(P) is nontrivial. Moreover, J(P) is a characteristic
subgroup of P, for if « € Aut(P) and P’ is an elementary abelian p-subgroup of P of order
n, then so is (P )a < J(P).

Theorem 1.8.3 (Thompson). Let G be a finite group and let P be a Sylow p-subgroup
of G where p is odd. Then G is p-nilpotent if and only if Ng(J(P)) and Ce(Z(P)) are
p-nilpotent.

Proof. See [19, p. 298]. O
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1.9 Fixed-point-free Automorphisms

Let G be a group and let o € Aut(G). « is said to have a fized point g € G if ga = g. If
the identity of GG is the only fixed point of «, then « is said to be fixed-point-free.
Here are some basic properties of fixed-point-free automorphisms.

Proposition 1.9.1 ([19, p. 305]). Let « be a fized-point-free automorphism of order n of
a finite group G.

(1) If ged(m,n) = 1, then o™ is fized-point-free.
(ii) If B : G — G is defined by g — g~ '(ga), then 3 is a permutation of G.
(i11) If g € G, then g and ga are conjugate in G if and only if g = 1.

(iv) g(ga)---(ga™ ') =1 for all g € G.

(v) For each prime p dividing the order of G, there exists a Sylow p-subgroup P of G
such that Poao = P.

Proof. (i) There exist integers s and ¢ with ms + nt = 1. Suppose that ga™ = g. Then
ga = ga = ga™® = g, so g = 1. Thus o™ is fixed-point-free.

(ii) Suppose that g3 = hB. Then g~'(ga) = h™'(ha) so hg™! = (hg™H)a, but « is
fixed-point-free, so h = g. Thus (8 is 1-1, but G is finite, so [ is also onto.

ms+nt

(iii) Suppose that ga = h~'gh for some h € G. By part (ii), h = a~'(aa) for some
a € G. Then

go=h""gh = (a"'(aa))"'g(a " (aax)) = (a) 'aga™" (ac),

which implies that (aga™')a = aga™!, but « is fixed-point-free, so aga™ = 1. Thus g = 1.
The converse is trivial.
(iv) Let = := g(ga) - (ga"!). Then

za = (g(ga) - (g ))a = (ga) - - (g ')g = g~ 'y,

so x = 1 by part (iii).

(v) Let @ be a Sylow p-subgroup of G. Then Qa is also a Sylow p-subgroup of G, so
Qa = g71Qg for some g € G. By part (ii), g = h(h~'a) for some h € G. Let P := h™*Qh.
Then P is a Sylow p-subgroup and

Pa = (h'Qh)a
= (ha)™(Qa)(ha)
= (ha)"H (h(h™'a)) "' Q(h(h ™ a))ha
=h71Qh
=P.
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Lemma 1.9.2. Let G be a finite group with a fixed-point-free automorphism o of prime
order p. If H is a proper normal subgroup of G satisfying Ho = H, then G/H has a

fixed-point-free automorphism of order p.

Proof. Define 3: G/H — G/H by Hg+ H(ga). Then Hg = Hy <= ¢g '€ H <
(97 )a € H < H(ga) = H(g'a), so 3 is well-defined and 1-1. Since « is an onto
homomorphism, so is 3. Note that if Hg = H(ga) for all g € G, then g(ga)™ € H for all
g € G,or g-'(ga) € H for all g € G, but then H = G by part (ii) of Proposition 1.9.1, a
contradiction. Thus /3 is not the identity. Then since o has order p, Hg3? = H(ga?) = Hg
for all g € G, so [ has order p. Lastly, suppose that (Hg)5 = (Hg) for some g € G. Then
g(g7'a) € H. Since Ho = H, a|lg € Aut(H) and is fixed-point-free, so by part (ii) of
Proposition 1.9.1, g € H. Thus [ is fixed-point-free. ]

Lemma 1.9.3 ([19, p. 306]). Suppose that H < Aut(A) where A is a finite abelian group.
Suppose further that there exist o € Aut(A) and M < Aut(A) such that o3 is fized-point-
free of prime order p for all B € M, ged(|Al,|M]|) =1, and H = M x (o). Then M = {1}.

Proof. Let a € A and 3 € M. Then a(acf3)--- (a(cB)P~!) = 1 by Proposition 1.9.1. Since
A is abelian,

p—1 p—1
1= H (H a(aﬁ)i> = oMl H (H a(aﬁ)l) :

geM \i=0 i=1 \feM
Fix i € {1,....,p—1}. If (¢B)" = (¢3)" for some 3,3 € M, then (¢3)" € (af3'), so
of € (o) since ged(i,p) = 1 and o has order p. Thus for some j € {1,...,p — 1},

of = (of) =o' (o' 1) B’ ) ((0*) 7130 (0™ Bo) B

The element ((¢7~ 1) 1Fo?™ 1) ((6?)" 13 0?) (07 F'c)3 € M since M < H, and o’ € (0);
since M N (o) = {1}, we must have that ¢ = ¢/, but ¢ has order p and j € {1,...,p— 1},
so j = 1. Thus if (¢3)" = (¢4')", then 8 = 3. Now, (08)" = o'(c"1)713--- 08 = o'
where 3% := (¢""1)713...08 € M. Since (¢(3)" is distinct for each 3 € M, so is each 3*.

Then
H a(opf)' = H ac'f3.
BeM BeEM
It follows that )
o
o Ml = H (H aa’ﬂ) .
i=1 \BeM

Let v € M. Then

(a= M)y = m (H aaim) = ﬁ (H aa’ﬂ) = a M,

i=1 \BeM i=1 \BeM
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Let n denote the order of a. Then gcd(n,|M|) = 1, so there exist integers s and ¢ with
ns + |M|t = 1, which implies that ay = (al™y)? = a™ = a. Since a € A was arbitrary
and v: A— A v=1. Thus M = {1}. O

Theorem 1.9.4 (Thompson, [19, p. 306]). Let G be a finite group with a fized-point-free
automorphism o of prime order p. Then G is nilpotent.

Proof. The proof is by induction on |G|. The base case is the cyclic group of order 3 (it
has a fixed-point-free automorphism of order 2), which is nilpotent.

First I show that G must be solvable. If GG is any g-group, where ¢ is a prime, then G is
solvable, so we may assume both that G is not a ¢-group and that there is an odd prime ¢
dividing |G|. By Proposition 1.9.1, there exists a Sylow g-subgroup @ such that Qa = Q.
Note that the Thompson subgroup of Q, J(Q), is solvable as it is a g-group. Moreover,
J(Q)a = J(Q) since J(Q) char Q.

If J(Q) <G, then G/J(Q) has a fixed-point-free automorphism of order p by Lemma
1.9.2; J(Q) # {1} so |G/J(Q)| < |G|. Then G/J(Q) is nilpotent by induction, hence
solvable, but so is J(Q), so G is solvable by Proposition 1.7.1.

If J(Q) is not normal in G, then Ng(J(Q)) < G. I claim that (Ng(J(Q)))a =
Ng(J(Q)). Suppose g~ J(Q)g = J(Q) where g € G. Then

J(Q) =J(Q)a= (7" J(Q)g9)a = (90) " J(Q)(ga),

so No(J(Q))a < Ng(J(Q)). As they have the same order, Ng(J(Q))a = Ng(J(Q)),
as desired. Since {1} # J(Q) < Na(J(Q)), o|ngiq) is fixed-point-free of order p, so
Ne(J(Q)) is nilpotent by induction.

Now, consider C¢(Z(Q)). If Ce(Z(Q)) = G, then Z(Q)) < G. Since Z(Q) is character-
istic in Q, G/Z(Q) has a fixed-point-free automorphism of order p by Lemma 1.9.2. Z(Q)
is not trivial since @ is a nontrivial g-group, so |G/Z(Q)| < |G|. Thus G/Z(Q) is nilpotent
by induction, hence solvable, but Z(Q) is solvable as it is a g-group, so G is solvable.

Suppose now that Co(Z(Q)) < G. Let g € Ce(Z(Q)) and z € Z(Q)). Then x = yo for
some y € Z(Q) since Z(Q) is characteristic in Q. This implies that

(go)'2(gar) = (g 'yg)a = ya =z,

so Ca(Z(Q))a < Ce(Z(Q)). Thus Ce(Z(Q))a = Ca(Z(Q)). If Ca(Z(Q)) is trivial, it is
nilpotent. If not, then a|c,z(g)) is fixed-point-free of order p, so C(Z(Q)) is nilpotent by
induction.

Thus both C¢(Z(Q)) and Ng(J(Q)) are g-nilpotent by Proposition 1.8.2, so G is ¢-
nilpotent by Theorem 1.8.3. Then there exists a normal subgroup N of G with |[N| =k
where |G| = ¢"k and ¢ 1 k. Note that G = QN since |QN| = |G|. Let n € N. Then
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na = am where a € Q and m € N, so a = nam™ € ). This implies that nam ™! has
order ¢ for some [ € {0,...,n}, so

1= (nam_l)ql = (noz)ql((noz)ql_l)_lm_1 - -nam™ !

The element ((na)?~1)~"'m=...nam=' € N since N<G, so (na)? € N. But ged(q', k) =
1, so there exist integers s and ¢ with ¢'s + kt = 1. Then since n** = 1, na = (n&)qls €N,
so Na = N. Since N < GG, N is nilpotent by induction, hence solvable. But /V is nontrivial
as G is not a g-group, so |G/N| < |G|. Thus G/N is solvable by induction and Lemma
1.9.2, so G is solvable.

Thus in all cases, G is solvable. Of course, we may assume that G is not abelian, so if
Z(G) is nontrivial, then G/Z(G) is nilpotent by induction and Lemma 1.9.2, which implies
that G is nilpotent by Proposition 1.8.1. Hence, it suffices to show that Z(G) is nontrivial.
Note that if G’ = G, then G = G for all i > 1, but G is solvable, so G™ = 1 for some
n > 1 by Proposition 1.7.1, a contradiction. Thus G’ is a proper nontrivial characteristic
subgroup of G. Let A be a nontrivial normal subgroup of G that is minimal with respect
to Ao = A. Since G’ < G and A is minimal, A < G. Now, A’ char A, so A’ <G and
A'a = A’. Since A is solvable, A’ < A, so by the minimality of A, A’ = {1}. Thus A is
abelian. Let ¢ be a prime dividing |A|, and define A* := {a € A : a? = 1} # {1}. Then
A* char A since (af)? = a8 =1 for all § € Aut(A), so, by the minimality of A, A = A*.
Thus A is an elementary abelian g-group.

If G is a g-group, then Z(G) is nontrivial, so we may assume that there exists a prime
r | |G| such that r # ¢. By Proposition 1.9.1, there exists a Sylow r-subgroup R of G
such that Re = R. AR < G since A JG. If AR < G, then since (AR)a = AaRa = AR,
AR is nilpotent by induction. R is a Sylow r-subgroup of AR, so by Proposition 1.8.1,
R is the unique Sylow r-subgroup. Thus R < AR. Clearly AN R = {1} since ¢ # r, so
[A,R] < AN R = {1}, which implies that R < Cg(A). Suppose that AR < G for each
prime r dividing the order of G such that r # ¢ (where R is defined as above). Then
G /Cg(A) is a g-group. Define a group action of G/Cg(A) on Aut(A) by a9 .= g~lag
for all g € G and a € A. Then A x G/Cs(A) is a g-group, hence is nilpotent, so we may
let 1 #a€ ANZ(AxG/Cs(A)) by part (vii) of Proposition 1.8.1. Then for all g € G,

(a,Ca(A)g) = (a,Ca(A))(1,Ca(A)g)

= (1,C. ( ) )(a, Ca(A))
= (a®W9™ Cg(A)g)
= (gag™",Ca(A)g).

Then a = gag™ for all g € G, so a € Z(G), and we are done.

So we may assume that there exists a prime r # ¢ dividing the order of G and a Sylow
r-subgroup R with R = R and AR = G. Let ¢,,, : A — A be conjugation by m € G. Let
o :=als and let M = {¢,, : m € R} < Aut(A).
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Let 1 # ¢, € M N (o). m must have order n # 1 for some integer n, so apl, =
(m™)~tam™ = a for all a € A, but @, € (o) implies that ¢,, has order p, so p | n. Thus R
contains an element of order p, but R is an r-group, so r = p. Define ¢ : (o) — Aut(R)
by a +— a|g. This is a group action. Then R x () is nilpotent since it is a p-group, so by
Proposition 1.8.1, RN Z(R x {(«)) is nontrivial; let 1 # x be in this intersection. Then

(xvail) = (=, 1)(170571) = (1’0471)(3;7 1) = (xa7a71> = (xO‘aO‘71>7

so x = xa, which implies that x is a nontrivial fixed point of «, a contradiction. Thus
M N (o) = {1}. Now, suppose that ¢,, € M and o' € (o). Then

a(c7mot) = (m Y (ac™"

= APmqi

for all a € A, 80 070, 0" = Ppmai € M since ma® € R. Thus M is normalized by (o), so
we may define H := M x (o) < Aut(A).

If M contains an element of order ¢, say ¢,,, and the order of m is n, then ¢ | n as we
saw before, but R is an r-group, so ¢ = r, a contradiction. Thus gcd(|A|,|M|) = 1. Let

1

©m € M. Suppose that acp,, = a for some a € A. Then aa = aoc = mam™", so ax and

a are conjugate in GG. By Proposition 1.9.1, a = 1, so oy, is fixed-point-free on A. To
show that o, has order p, it suffices to show that o, is conjugate to o in Aut(A). a™!
is fixed-point-free on R and ma™! € R, so there exists an s € R with ma™ = s7!(sa™!)

by Proposition 1.9.1. Then m = (s~'a)s, so

1

ap;lop, = s H((sas ™ )o)s = s H(sa)(aa) (s a)s = m T (ao)m = aop,,

for all a € A, so ¢ 'op, = o, as desired. Thus o3 is fixed-point-free on A of order p
for all 3 € M, so M = 1 by Lemma 1.9.3, which implies that a = m~tam for all m € R
and a € A. Then since A is abelian, A < Z(AR) = Z(G), and we are done. O

1.10 Finite Simple Groups

My main references for this section are [7], [8] and [12]. Let G be a group. A composition

series of a group G is a sequence of subgroups

where GG;;1 is a maximal normal subgroup of G; for each i. As we saw in Section 1.4,
G;/Gi11 is simple for all i. The factors G;/G; 1 are called composition factors, and n is
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the length of the series. Moreover, it is easy to see that every finite group has a composition
series: G must contain a maximal normal subgroup Gy; if G, is trivial, we are done, and
if not, then G; contains a maximal normal subgroup, and so on. This process must
terminate since G is finite. Note that if the factor groups all have prime order, then G
is solvable. The Jordan-Holder Theorem (see [20, p. 100], for example) states that any
two composition series of a group G have the same length and also that there exists a 1-1
correspondence between the sets of correspondence factors such that corresponding factor
groups are isomorphic. Thus a finite group G determines a unique list of finite simple
groups, namely, the factors of any one of its composition series. It is for this reason that
finite simple groups are so important.
Here is the classification of the finite simple groups:

Theorem 1.10.1 ([12, p. 6]). A finite simple group is either cyclic of prime order, the
alternating group A, when n > 5, a group of Lie type, or one of 26 sporadic groups.

As I mentioned in the introduction, the original proof was based on extensive research
by numerous mathematicians; the completion of this immense result was first announced
by Gorenstein in [11]. The proof is now being rewritten in a more concise and self-contained
fashion; presently, there are six volumes of a projected twelve, of which [12] is the first.

I will very briefly outline the various types of finite simple groups. Of course, if G is
simple and abelian, then G is a cyclic group of prime order. Moroever, it is well-known that
the alternating group A, is a nonabelian simple group for n > 5. The simple groups of Lie
type can be characterized as groups of fixed points of endomorphisms of linear algebraic
groups over an algebraically closed field of characteristic p (see [23]), and they consist of
several infinite families of groups. Some of the groups of Lie type involve families of well-
known classical groups: linear groups, unitary groups, symplectic groups and orthogonal
groups. I give details on the first two classical groups of Lie type as they will be mentioned
in Section 3.

Consider the general linear group of n x n invertible matrices over the finite field I,
denoted by GL,(q). The special linear group, denoted by SL,(q), is the set of all of
matrices of determinant one, and is actually a normal subgroup of GL,(q). The projective
special linear group, denoted by PSL,,(q), is simply SL,(q)/Z(SL,(q)). In fact, Z(SL,(q))
consists of the scalar matrices of SL,(q). PSL,(q) is simple if n > 2 except when n = 2
and ¢ = 2 or 3; it is called a linear group within the world of finite simple groups.

The general unitary group GU,(q) is the group of matrices M € GL,(¢*) such that
M=t = (M), where M is simply M with every entry raised to the g-th power. The special
unitary group SU,(q) is then the subgroup of GU,(q) consisting of those matrices with
determinant one, and the projective special unitary group PSU,(q) is SU,(q) factored out
by its scalar matrices. PSU,(q) is simple if n > 2 except when ¢ = 2 and n = 2 or 3 or
when ¢ = 3 and n = 2; it is called a unitary group within the world of finite simple groups.
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There are also 26 sporadic groups which do not fit into any infinite family of nonabelian
simple groups. The first five of these groups were discovered by Mathieu in the 1860’s,
but most of the remaining sporadic groups were disovered through attempts to prove the
classification of the finite simple groups.

The outer automorphism group of G, denoted by Out(G), is simply the quotient group
Aut(G@)/Inn(G). Consider briefly the outer automorphism group of a finite simple group:
if G is cyclic of prime order p, it is not hard to see that Out(G) ~ Aut(G) =~ Z;, the
multiplicative group of units of the ring 7Z,, which is abelian. Suppose that n > 5. Let
T € Sy, and as usual, let ¢, : S, — S, be conjuagtion by m. We can easily map 5,, into
Aut(A,) by ™ — pr|a,; this is clearly an embedding since Cyg, (A,) is trivial. Moreover,
it can be shown that if n # 6, then this map is onto (see [24, p. 299]). But A, is
simple and nonabelian, so A, ~ Inn(A,), which gives us that |Out(A,)| =[S, : 4,] = 2.
Thus Out(A,) ~ Zs when n # 6. In [24, p. 300], it is proved that Aut(Ag) = Aut(Ss)
and [Aut(Ss) : Inn(Ss)] = 2. Since we also have that Sg =~ Inn(Ss), it follows that
|Out(Ag)| = 4 (in fact, Out(Ag) ~ Za X Zs). Hence for n > 5, Out(A,) is abelian. T will
not go into details when G is of Lie type, but it turns out that Out(G) is solvable; see [7].
Lastly, if G is one of the 26 sporadic groups, then Out(G) has order at most 2, hence is
abelian.

Summarizing, if G is either cyclic of prime order, the alternating group A, when n > 5,
or one of the 26 sporadic groups, then Out(G) is abelian, and if G is of Lie type, then
Out(G) is solvable. The classification of the finite simple groups then implies that we
have proven the Schreier Conjecture, stated below. To date, no simpler proof is known.
Interestingly, I could not find an original reference for this conjecture.

Theorem 1.10.2 (Schreier Conjecture). The outer automorphism group of a finite simple
group 1s solvable.
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2 Finite Primitive Permutation Groups

First I define primitivity and look at some of the properties of finite primitive permutation
groups; specifically, I examine the highly restrictive structure of the socle of a finite prim-
itive permutation group. I then describe the five isomorphism classes of a finite primitive
permutation group as they are outlined in [14]. I finish with the proof of the O’Nan-Scott
Theorem. Except where otherwise noted, all of the results in the isomorphism class sec-
tions (2.2-2.6) are stated or implied in [14] but not proved; again, my main source for the
proof of the O’Nan-Scott Theorem is [14], though I have reorganized their proof somewhat.

Both [8] and [19] are general references for this entire section.

2.1 Primitivity

Let Q2 be a G-space, and let v € €2. A block is a nonempty subset I' of €2 such that for every
g € G,either T'=T9 or TNTY =(. Q and {«} are called trivial blocks as they are rather
uninteresting. Any other block of €2 is called nontrivial. A transitive G-space € is called
primitive, or equivalently, GG is said to act primitively on €2, if {2 contains no nontrivial
block. If the action of a primitive G-space is faithful, then G is said to be a primitive
permutation group. Note that if G is primitive, then G is a primitive permutation group
(irrespective of the action being faithful).

The definition is only given for transitive G-spaces since if the action of G' on  is
nontrivial and not transitive, then G must have a proper orbit containing at least two
elements, which is a nontrivial block.

Before I look at some of the properties of primitive G-spaces, I consider briefly how any
group action can be reduced to a primitive one. Let G act on 2. Then G is transitive on
the orbit O («) for all @ € Q. Suppose that 0o («) contains at least two elements, and let
I' C O¢(«) be a minimal block of G containing at least two elements. Then I claim that
Gr acts primitively on I'. Let «, 8 € I'. Then there exists a g € G with o9 = (3 since G is
transitive on fg(«). Since af = € I'YNT and I is a block of G, I'Y = T". Thus g € G, so
Gr is transitive on I'. Now, let A C I" be a block of Gr containing at least two elements.
Let g € G. If g € Gr, then of course AY = A. If g ¢ Gr, then TYNT =0, so AYN A = ().
Hence, A is actually a block of G, so A = I' by the minimality of I". Thus Gr has no
nontrivial blocks, so Gr is primitive on I'.

Suppose now that N acts on €2 and contains a subgroup G which is primitive on 2.
Then for every proper subset I' of €2 containing at least two elements, there exists a g € G
such that I" # T and ' N I'Y # (0. Then each such ¢ € N, but G is transitive, so N
is transitive, hence primitive. In particular, every subgroup of S containing a primitive
group is itself primitive.

I claim that A% is primitive when € contains at least three elements (if 2 is infinite,
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then A? is defined to be the subgroup of S generated by all of the 3-cycles). A% is
transitive, for if o, 3 € 2, then, choosing v €  such that v # « and v # 3, we get
that the permutation 7 := (o 3 v) € A% and that am = 3. Let I' be a proper subset
of © containing at least two elements. Then there exist a € Q\ I' and 3,7 € I" with
B # ~. Again, let m be (a 8 7). Then o = y7m € I'm so I' # I'm. Similarly, v € I'mr N T,
so 'rNT # (. Thus A? is primitive. Moreover, it follows that S is primitive for all
nonempty §2: the result is trivial when €2 contains one or two elements, and if {2 contains
at least three elements, then S is primitive since A? is.

A G-congruence on €2 is a G-invariant equivalence relation ~ on €; that is, a ~ f <=
ad ~ 39 for all ¢ € G. Trivial and nontrivial G-congruences are defined in the obvious
way.

This next proposition is from an exercise in [8, p. 13].

Proposition 2.1.1. Suppose that Q is a G-space with Gt nontrivial. Then it is primitive
if and only if the only G-congruences on §2 are trivial.

Proof. Suppose that ~ is a nontrivial G-congruence on €. Let [«] be an equivalence class of
~ which contains at least two elements (and is of course proper). Let g € G and [ € [a]9.
Then § = 79 where v ~ «, so B = v ~ «, which implies that  ~ af since ~ is a
G-congruence. Thus § € [af], so [a])? C [a¢]. Similarly, [a9] C [a]9, so [a]? = [a9]. Thus
(@]9 is an equivalence class for all g € G it follows that [a] is a nontrivial block, so 2
cannot be primitive.

Suppose now that €2 is not primitive but is transitive. Then there exists a nontrivial
block T', and every element of € is in I'Y for some g € G. Moreover, if 'Y N T" #£ () for
some g,h € G, then T9"" NT # 0, so %" = T since I is a block, which implies that
[ =T". Thus {T"Y : g € G} partitions 2, which allows us to define an equivalence relation
~ on ) by a ~ 3 if there exists a ¢ € G with «, € Y. ~ is G-invariant since o ~ f3
implies that a, 3 € I'* for some h € G, s0 o9, 39 € I'™ and a9 ~ (39. Thus ~ is a nontrivial
GG-congruence.

Lastly, suppose that € is not transitive. Define ~ by a ~ 3 if a and ( are in the same
orbit. This clearly defines a GG-congruence whose congruence classes are orbits. Since €2 is

not transitive and since the action is not trivial, ~ must be nontrivial. ]
The proof of Proposition 2.1.1 shows that this variant must also be true:

Proposition 2.1.2. Suppose that Q2 is a transitive G-space. Then it is primitive if and

only if the only G-congruences on ) are trivial.

This next property of primitive permutation groups is quite important and will be used
without reference.
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Proposition 2.1.3 ([19, p. 199]). Let G be a primitive permutation group on 2. If N is

a nontrivial normal subgroup of G, then N is transitive on ().

Proof. N is nontrivial, so N must move some element of §2; thus there exists an N-orbit I
containing at least two elements. Let o € T" and g € G. Then agn = a(gng')g € T'g for
all n € N since N is normal in G, so I'gn C I'g for all m € N and g € G. It follows that
I'gn =Tgforalln € N and g € G, so ['g is an N-orbit for all g € G. Then I'" is a block of
G since two orbits are either the same or have empty intersection, but G is primitive, so
' =Q. Thus N is transitive. m

Note that the requirement above that G be a permutation group is necessary: if G
does not act faithfully on €2 where €2 contains at least two elements, then the kernel of the
action is a nontrivial normal subgroup of G that moves no element of €2 and so cannot be
transitive.

Let H, K and L be subgroups of a group G where H < K. Suppose that we have
an action of L on K. Then H is said to be an L-invariant subgroup of K if H' = H for
all [ € L. For the action to be conjugation, L must normalize K. If so, then H is an
L-invariant subgroup of K if and only if L < Ng(H). I will assume for the remainder of
this thesis that the action is conjugation whenever I refer to invariant subgroups.

In the following, the proof of part (i) comes from [19, p. 198] while part (ii) is an

exercise from [8, p. 124].
Theorem 2.1.4. Let G act on 2, where €2 contains at least two elements.

(1) G is primitive if and only if G is transitive and G, is a mazimal subgroup of G for
all a € Q).

(i) Let H be a transitive subgroup of G which is normalized by Gg for some € €.
Then G is primitive if and only if H, is a maximal G,-invariant subgroup of H for
all € Q).

Proof. (i) Suppose that G is primitive, and let a € €. G, is a proper subgroup of G since
() contains at least two elements. Let G, < H < G and define I' := {ah :h € H}. Then
' is an H-orbit. Let ¢ € G and suppose that 3 € TYNT. Then 3 = a9 = o for some
hi,hy € H, which implies that high,' € G, < H,so g € H. But then 'Y =T, so I' is a
block. G is primitive so either I' = {a} or I' = Q. Suppose that I' = {a}, and let h € H.
Then o = a asa” €T, so h € G,. Thus G, = H. Suppose instead that I' = 2, and let
g€ G. Then a9 € Q =T, so a9 = a" for some h € H. It follows that gh™! € G, < H, so
g € H and H = G. Thus G, is a maximal subgroup of G.

Suppose now that G is not primitive but is transitive. Then there exists a nontrivial
block I'; let o € I'. G, < Gr since if a9 = «, then I'Y N T" # (), which implies that I'Y =T,
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Suppose that G, = Gr, and let § € I'. By transitivity, there exists a ¢ € G such that
B =a’ Then I'9NT # (), so it follows that ¢ € Gr = G,. But then 8 = o = a, so
I' = {a}, a contradiction. Suppose now that G = Gr, and let § € 2. Again, there exists a
g € Gsuchthat f =a¥. Then g €Y =1,s0€) =T, acontradiction. Thus G, < Gr < G,
so (G, 1s not maximal in G.

(ii) Since H is transitive, G is transitive, and since ) contains at least two elements,
H, is a proper subgroup of H. Moreover, for every o € €2 there exists an h € H with
B =a" soGs=Gun =h 'Gyh. Then G, normalizes H for all € Q2 since G5 normalizes
H. In particular, H, is normal in G, so H, is a proper G,-invariant subgroup of H for
all o € €.

Suppose that G is primitive, and let a € 2. Suppose further that there exists M < G
such that H, < M < H and G, < Ng(M). If G, = Ng(M), then M < G,, but M < H
soM <Go,NH=H, Thus M = H,. If G, < Ng(M), then since G is primitive,
Ng(M) = G by part (i). Then M is normal in G, so G, < G, M < G. Moreover, if M is
trivial, then H, = {1} = M, so we may assume that M is not trivial. Then since M <G
and G is primitive, M is transitive. If G, = G, M, then G, is transitive since M is, a
contradiction of €2 containing at least two elements. Thus G, M = G, again by part (i), so
H=HN(G,M)=H,M = M. Thus H, is a maximal G,-invariant subgroup of H.

Suppose now that GG is not primitive; let I' be a nontrivial block and o« € I'. As we saw
in the proof of part (i), G, < Gr < G. Let M := Gr N H = Hr. Then G, normalizes
M since G, < Gr and G, normalizes H. Clearly H, < M < H. If H = M = Hr, then
since H is transitive, repeating the proof of part (i) gives us that Q = I', a contradiction.
If H, = M = Hr, then again by the proof of (i), we get that I' = {«}, a contradiction.
Thus H, is not a maximal G,-invariant subgroup of H. H

Note that when G is a transitive permutation group, given any 3 € ), Gg = Goo =
g 'Gog for some g € G. Thus every stabilizer of a transitive permutation group G is
conjugate in G. It follows that if one stabilizer of GG is a maximal subgroup of G, then
every stabilizer is maximal in G. Thus to show that a transitive group G acts primitively,
it suffices to show that one stabilizer is maximal in G. Similarly for part (ii), it suffices
to show that H, is a maximal G,-invariant subgroup of H for some a € {2. On the other
hand, if we know that G is primitive, both conditions will be useful in classifying which
isomorphism class G belongs to. In particular, since we will see shortly that the socle of
a finite primitive permutation group has a very nice structure and since such a socle is
transitive by Proposition 2.1.3, the H in part (ii) is often taken to be the socle.

The next result is an exercise in [8, p. 52| that is required to prove Proposition 2.1.6,

the first application of Theorem 2.1.4.

Proposition 2.1.5. Let G be primitive on () where ) contains at least two elements. Then
G is not regular if and only if G, is self-normalizing in G for all o € ).
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Proof. Let a € Q. Since G is primitive, G is transitive, so G is regular if and only if G, is
trivial. Note that if G, is trivial, then G, < G. On the other hand, if G, < G and G, is
not trivial, then G, is transitive by primitivity, but then €2 can only contain one element,
a contradiction. Thus G is regular if and only if G, <G, or G is not regular if and only if
Ne(Go) < G. Since G is primitive, G, is maximal in G, but G, < Ng(G,) < G, so either
Go = No(Ga) or No(G,) = G. Hence, G is not regular if and only if G, = Ng(G,). O

Proposition 2.1.6 ([8, p. 50]). Let G and H be groups acting on sets A and I" respectively,
where H is not trivial, and both A and I' contain at least two elements. Then the product
action of W := H wra G on Q :=T? is primitive if and only if A\ is finite, G is transitive
on A, and H is primitive but not reqular on T'.

Proof. Let B be the base group of W, B" := {(b,1) : b € B} and G' := {(1p,9) : g € G},
so that W = B'G’. Let v € I" and define o, € Q2 by 6 — 7. Now
a, = a’(yb,g) — 5= 50@ _ (505,(;)’9) — (5g*1a’y)59*1b _ 759*117
for all § € A, which is true if and only if v = 7% for all § € A (as 69" acts as a bijection
on A). Thus
Wo, ={(b,g) e W:6be H, for all § € A}.

Since I' contains at least two elements, so does €2, so by Theorem 2.1.4, W is primitive if
and only if W is transitive and W, is maximal in W. First, I prove that if one of the five
conditions in the theorem fails, then one of these two conditions on W must fail.

Suppose that H is not transitive on I'. Let 7,7 € I'. If W is transitive on €2, then for
a., and a., defined as above, there exists a (b, g) € W with

(bg) —
Oé,y = Oépyl.

Then for each § € A,

_ -1 -1
v = Sy = 50&,9) = (69 1067)59 b _ 759 b

and 09 'b € H, so H is transitive on T, a contradiction. Thus W is not transitive on Q.

We may assume then that H is transitive. Since |I'| > 2, H, is a proper subgroup of
H. If h € H, define b, € B by ¢ — h. This function will be used repeatedly.

Suppose that H is not primitive. Since H is transitive, there exists a K with H, <
K < H. Let K' :== {(b,g) € W : b € Kforallo € A}. Clearly W, < K' < W.
Let h € H\ K. Then (by,1) € W\ K’, so K’ < W. Similarly, let £ € K \ H,. Then
(bx,1) € K'\ W, , so W, < K'. Thus W, is not maximal in W.

Suppose that H is regular. Then W, = {(b,g) € W : 6b = 1foralld € A} =
{(1g,9) e W} =G". Let L := {(b,1) € W : 6b = d'bfor all §,6’ € A}. Then L < W.
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Moreover, L is normalized by G’ since if (b,1) € L then for all §,6’ € A and g € G,
ob9 =09 'b = 6" 'b = §'b?, which implies that (15,9) ' (b,1)(15,9) = (1%,1) € L. Thus
Wo =G < LG <W. If ' = LG, then L < G’, but L < B’ so L must be trivial. H
is not trivial, so let 1 # h € H. Then (15,1) # (b, 1) € L, a contradiction. If LG' = W,
then clearly L = B’, but A contains at least two elements so we can define an element of
B which separates 1 and h # 1, a contradiction. Thus W, < LG' < W.

Suppose that G is not transitive on A. Let ¥ be an orbit of G in A, and let M =
{(b,1) € W : éb € H,forall§ € ¥} < B. Again, M is normalized by G’ since for
(b,1) € M and g€ G, 609 =69 b e H, forall § € ¥ (since 69 € ¥ for all § € ¥), which
implies that (09,1) € M. Clearly we then have that W, < MG' < W. Let h € H\ H,,

and define b € B by
5b e 1 ifde ;,
h otherwise.

Then (b,1) € MG"\ W, . Moreover, (by,1) € W\ MG'. Thus W, < MG" < W.
Lastly, suppose that A is infinite, and let

N :={(b,1) € W :6b=1 for all but finitely many § € A}.

Let (n,1) € N. Then for all (b,g) € W,

(b,9)" (. 1)(b, g) = ((b71)?, g7")(nb, g) = ((b7")*(nb)?, 1) = ((b~'nb)?, 1).

g~! permutes the elements of A so 69 'n = 1 almost always, and if 8 'n = 1, then
S(b~'nb)? = (09 'b)"1(69 'n) (89 'b) = 1, so §(b"'nb)? = 1 almost always. This implies
that ((b~'nb)?,1) € N, so N is a normal subgroup of W. Then W, < W, N < W. Let

h € H\ H,. Choose 0y € A and define by € B by

5 ::{ hoif 6 =6,

1 otherwise.

Then clearly (bo, 1) € Wy, N\ W, . Now consider (by,1). If (by,1) € W, N, then (by, 1) =
(b,9)(n,1) = (bn9™", g) for some (b,g) € W,, and (n,1) € N. Then g = 1, so b, = bn.
ob € H, for all § € A, so 6b # h for all § € A. But then dn = §b~'b, = (6b)'h # 1 for all
d € A, s0(n,1) ¢ N, a contradiction. Thus (b, 1) € W\ W, N.

Hence, if any of the conditions that A be finite, G be transitive on A, or H be primitive
but not regular on I' fail, then W is not primitive.

Suppose now that A is finite, GG is transitive on A, and H is primitive but not regular
on I'. Let o, 3 € Q. For each § € A, we may choose h; € H such that (da)" = §3 since
H is transitive on I'. Define b,3 € B by ¢ +— hs. Then

salber) = (§a)es = (§a) = 4§
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for all § € A, so al®»#Y) = 3. Thus W is transitive on €.

Let U be such that W, < U < W. To show that W is primitive, we must show that
U=W. W =BG = BW, since G <W,,. Then U =UnNW =UnBW,, =
(UNB")W,,. It follows that if UN B = W, N B, then U = W, NB'W, =W, , a
contradiction, so there exists a (b*,1) € (U N B’) \ (W,, N B’). Then (b*,1) ¢ W,_, so
there exists a dp € A with dob* ¢ H,. H is primitive but not regular and I' contains at
least two elements, so by Proposition 2.1.5, H, is self-normalizing in H. Then there exists
an h € H, where (6ob*) " 'h™(db*) ¢ H., (or else dpb* normalizes H.,, which implies that
dob* € H,). Define by € B by

1 otherwise.

5 ::{ hoif & = 4,

Then clearly (bo, 1) € W, < U, so ([b*,b],1) € UNDB'". 6o[b*, bo] = [0b*, dobo] = [dob*, h] ¢
H, since h € H, and (6pb*) " th™*(dob*) ¢ H.. Thus we have that H., < (d[b*, bo], H,) < H,
but H is primitive, so (do[b*, bo], H,) = H.

For each § € A, let Bs = {(b;1) € W : §b = 1forall o’ # 6} < W. More-
over, I claim that Bs, < U. Let (b,1) € Bs,. db € H = (o[b*,bo], Hy), so dpb =
hy(0g[b*, bo])™ - - - hy (90 [b*, bo])™ where for all i € {1,...,k}, h; € H, and n; is a nonnega-
tive integer. For each i € {1,...,k}, define b; € B by

5y { hy if 8 = b,

1 otherwise.

Since 0[b*,by] = 1 for all 0 # g, b = by[b*, bo]™ - - - bp[b*, bg|"™*. Then (b,1) € U since
([b*,b0),1) € U and (b;, 1) € W, < U for all i. Hence, Bs, < U, as desired.

Let (b,1) € Bs, and (1,g) € G'. Then (1,9)7*(b,1)(1,9) = (v%,1), and if § # §J, then
69" £ 85,50 009 =69 'b =1 (as (b,1) € By,). Thus (1,9) (b, 1)(1,9) € Bsg. On the other
hand, suppose that (b, 1) € Bys. If 6 # o, then 69 # 4§, so ob9 " =09 =1 (as (b,1) € Bsg),
and so (b9 ', 1) € By,, which implies that (b,1) = (1,¢)"*(b* ", 1)(1,9) € (1,9) ' Bs, (1, 9).
Thus (1,9)~"'Bs,(1,9) = By for all g € G. But G is transitive on A, so for each § € A
there exists a g5 € G with §5° = 0. Hence for all § € A,

Bs = By = (1,95) "' Bs, (1,95) < U

since G’ < U and B;, < U. But A is finite, so B’ = [[;cp Bs < U, and thus W = B'W,, <
U, as desired. O

The next set of propositions give a very precise description of the socle of a finite

primitive permutation group.
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Proposition 2.1.7 ([14]). Let G be a finite primitive permutation group on ). Then G

has at most two minimal normal subgroups.

Proof. 1t GG is trivial, then G' has no minimal normal subgroups, and we are done. Let J
be a minimal normal subgroup of G. If C(J) = {1}, then J is the unique minimal normal
subgroup of G since if K is another minimal normal subgroup of G, then K < Cg(J) = {1},
a contradiction.

Suppose then that C¢(J) is not trivial. Since G is primitive and C¢(J) is normal in G,
Cg(J) is transitive, so Cge(J) is transitive. Then by Proposition 1.2.1, J is semiregular.
Similarly, J is transitive, so by Proposition 1.2.1, C'sa(J) is semiregular, which implies that
Ce(J) is also semiregular. Thus both J and Cg(J) are regular. Let K be a nontrivial
normal subgroup of G contained in Cg(J). Since K is nontrivial and normal in G, it
is transitive, but K is contained in a semiregular group, so it is also semiregular, hence
regular. Then both K and Cg(J) are isomorphic to €2, so K = Cg(J), which implies that
Cg(J) is a minimal normal subgroup of G. Now, if L is any minimal normal subgroup of
G that is different from J, then L < Cg(J), but Cg(J) is minimal normal so L = Cg(J).
Thus G has minimal normal subgroups J and Cg(J) (where J and Cg(J) may be equal).
Hence in all cases, G has at most two minimal normal subgroups. ]

Proposition 2.1.8 ([8, p. 114]). If G is a finite nontrivial primitive permutation group
on §2, then one of the following holds:

(i) G has exactly one minimal normal subgroup J where J is a reqular elementary abelian

p-group for some prime p;
(i) G has ezxactly one minimal normal subgroup J where Cq(J) = {1};

(11i) G has exactly two minimal normal subgroups J and Cg(J), which are permutation
1somorphic, nonabelian and reqular.

Proof. Following the proof of Proposition 2.1.7, if Cg(J) = {1}, then we are in case (ii).
If Cq(J) # {1}, then we have regular minimal normal subgroups J and C¢(J). Note that
J = Cg(J) if and only if J is abelian: if J = Cg(J), then clearly J is abelian; on the
other hand, if J is abelian, then J < Cg(J), and so J = Cg(J) since Cg(J) is minimal
normal. So if J = Cg(J), then we are in case (i) by Proposition 1.7.2 as an abelian group is
solvable. If J # Cg(J), then J is nonabelian. J is regular, so J is permutation isomorphic
to Cga(J) by Proposition 1.2.6, hence to Cg(J) as Cq(J) < Cga(J) and both are regular.
Then Cg(J) is also nonabelian, and we are in case (iii). O

Note that in case (ii), J may or may not be regular.

Theorem 2.1.9 ([14]). The socle of a finite nontrivial primitive permutation group G on
Q is isomorphic to T* for some simple group T and some positive integer k.
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Proof. 1f we are in case (i) or (ii) of Proposition 2.1.8, then the result follows from Corollary
1.5.5. Suppose that we are in case (iii). Then soc(G) = (J,Cq(J)) = J x Cg(J). But J is

permutation isomorphic to C(J), so the result follows again from Corollary 1.5.5. O]
I conclude this section with some useful results about primitive permutation groups.

Proposition 2.1.10. Let G be a finite primitive permutation group with a nonabelian
socle. Then Cg(soc(G)) = {1}.

Proof. Let M := soc(G). M =~ T* for some k > 1 and some nonabelian simple group 7'
by Theorem 2.1.9, so C¢(M) = {1} by Proposition 1.5.6. O

Proposition 2.1.11 ([8, p. 115]). Let G be a finite nontrivial primitive permutation group
on Q. Then soc(G) is a minimal normal subgroup of Nga(soc(Q)).

Proof. Let M := soc(G). Of course M is normal in N := Ngo(M) and G < N. First
suppose that M is minimal normal in G. Let K be a nontrivial normal subgroup of N
contained in M. Then K <G, so K = M. Thus M is a minimal normal subgroup of N.

Suppose now that M is not a minimal normal subgroup of G. Then M = J x Cg(J)
where J and Cg(J) are the regular distinct minimal normal subgroups of G' by Proposition
2.1.8. Since J is transitive and J < Cg(Cq(J)), Ca(Cq(J)) is transitive. Since Cg(J)
is also transitive, it follows from Proposition 1.2.1 that Cg(Cg(J)) is semiregular hence
regular. Then Cg(Cq(J)) = J since J is also regular. Moreover, we know that J is
permutation isomorphic to Cg(J), so by Proposition 1.2.4, C(J) = n~'Jn for some n €
S Tt is then routine to verify that n=1Cq(J)n centralizes n~t.Jn since Cq(J) centralizes
J. Summarizing, we have that C(J) = n~tJn for some n € S n~1Cq(J)n < Ca(n=tJn)
and Cg(Ce(J)) = J. Then

n2Jn* =n"t(n"'In)n =n"'Cq(J)n < Cq(n~'Jn) = Ca(Cq(J)) = J,

but n=2Jn? and J have the same order, so n=?Jn? = J. Replacing n~'Jn with Cg(J), we
have n=*Cg(J)n = J, which implies that n € N since

n'Mn=n""Jnxn"'Cq(J)n = Cq(J) x J = M.

Now, M ~ T* for some k > 1 and some nonabelian simple group 7" by Theorem 2.1.9, so
J ~T% ~ Cg(J). By Proposition 1.5.2, G acts transitively on the k/2 factors of J and of
Ce(J), so N does as well. But then N acts transitively on all k factors of M since n € N.
Thus M is a minimal normal subgroup of N, again by Proposition 1.5.2. O

The following is constructed primarily for the proof of the O’Nan-Scott Theorem. Like
Lemma 1.4.3, the formulation and proof of the lemma are mine, but its existence is implied
by the proof of the O’'Nan-Scott Theorem in [14].
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Lemma 2.1.12. Let G be a finite primitive permutation group on €2, and let M be the
socle of G where M 1is nonabelian. Let o € §). Suppose that there exist groups Xq,..., X,
such that M = X; X -+ x X, and M, = (X1)q X -+ X (X;)a- Suppose that one of the
following holds:

(i) X; is simple for alli € {1,...,n};
(11) (Xi)a is a full diagonal subgroup of X; for alli € {1,...,n}.
Then G, acts transitively by conjugation on {Xi,..., X,}.

Proof. By Theorem 2.1.9, M ~ T* for some nonabelian simple group 7" and some k& > 1. So
we may write M = Ty X - -+ x T}, where T; ~ T for all i. Let N := Nga(M). In Proposition
2.1.11, we saw that M is a minimal normal subgroup of N, so N acts transitively by
conjugation on {7171, ...,T}}. Moreover, N is primitive since G < N, so N = N,M. Thus
N, acts transitively on {717,...,T}} (since T; < M for all 7). Both N, and G, normalize
M and M,, M, = M NN, = M NG, and (X;), = X; N M, for all i, so the conditions
of Lemma 1.4.3 with A taken to be N, or GG, and K taken to be M, are satisfied. Thus
both N, and G, act by conjugation on {Xj,..., X, } and {(X1)a, ..., (Xn)a}. Moreover,
if a € N, and a ' X;a = X, then a '(X;)aa = (Xj)a, and if (X)), is full diagonal for
all I and a ' (X;)aa = (Xj)a, then a ' X;a = X;. Lastly, note that N, acts transitively
on {X1,...,X,}, hence on {(X1)a, ..., (Xy)a} since N, acts transitively on {T1,...,T}}.
It follows in either case that if (X;,)a = X, for some iy, then (X;), = X; for all i,
hence M, = M. However, this is a contradiction since M being a nontrivial transitive
permutation group implies that M, < M. Thus (X;), < X; for all i.

0

(i) Suppose first that X; is simple for all i. To show that G, acts transitively on
{X1,...,X,}, it suffices to show that M is a minimal normal subgroup of G by Proposition
1.5.2 since G = G, M and X; < M for all 2. Let U be a nontrivial normal subgroup of GG
contained in M. Then U I M = X; x --- x X,,, so, rearranging the indices as needed,
U= X; x--x X; where s € {1,...,n}. Suppose that s < n for a contradiction. Let
Vi= Xy X X Xy X (Xgq1)a X o+ X (Xp)a- Then M, <V < M since (X;), < X; for all
i. Let a € G,. Then a permutes {X1,..., X} since U <G, so a permutes { X, 1,..., X, },
hence {(Xsi1)a,---5(Xpn)a} since G, < N,. But then G, < Ng(V), so M, is not a
maximal G,-invariant subgroup of M, contradicting the primitivity of G by Theorem
2.1.4. Thus s = n, so M is a minimal normal subgroup of G.

(ii) Suppose that (X;), is full diagonal in X; for all . If G, acts transitively by
conjugation on {(X1)a, ..., (Xn)a}, then G, acts transitively on { Xy, ..., X, }, so it suffices
to show that M, is a minimal normal subgroup of G, since (X;), is simple and nonabelian
for all 7. Let U be a nontrivial normal subgroup of G, contained in M,. Then U <
(X1)a X -+ X (Xy)a, so by Lemma 1.4.1, we have without loss of generality that U =
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(X1)a X -+ x (X))o where r € {1,...,n}. Suppose for a contradiction that r < n. Let
Vi=(X1)a X X (Xp)a X Xpy1 X -+ X X,,. Then again M, <V < M and G, < Ng(V)
since for a € G,, a ' (X;)aa = (X), implies that a ' X;a = X;. This contradicts the
primitivity of GG, so we must have that r =n and U = M,,, as desired. ]

2.2 Affine Type

Let V be a vector space over a field F'. Consider GL(V') (the group of all automorphisms
of V) as a permutation group on the set V. Let v € V. Define v* € SV by x +— z+v. v* is
clearly a bijection and is called a translation. Considering V' as an additive group, define
¢:V — SV by v+ v*. It is routine to verify that ¢ is a 1-1 group homomorphism. The
image of ¢, denoted by V*, is called the translation group of V. Of course V* NGL(V) =
{1y} since only the trivial translation can be linear. Let v* € V* and T € GL(V'). For all
reV,
o(T ') = (2T ' +0)T = 2T 'T + T = o + T = z(vT)*,

so T7'v*T = (vT)* € V*. Thus GL(V) normalizes V*, so we may define the affine group
of V to be V* x GL(V) :=Aff(V'). Keep the identity T~ 'v*T = (vT)* in mind.

Let v*T" € Aff(V')g. Then 0 = 0(v*T) = (0 +v)T = vT, so v = 0. Thus v*T = 0*T =
T € GL(V). On the other hand, if T € GL(V), then of course 07" = 0, so T' € Aff(V),.
Thus Aff(V)y = GL(V).

Note that V* is transitive on V, for if x,y € V, then (y —x)* € V* and z(y —z)* = 2 +
y—x = y. The additive group of V' is abelian, so V* is abelian. Thus V* < Cqv (V*). Since
V* is transitive, Cqv (V*) is semiregular by Proposition 1.2.1, so V* is also semiregular.
Moreover, Cigv (V*) is transitive since it contains V*, so both V* and Cgv (V*) are regular.
Thus V* = Cev (V7).

Let V' be a k-dimensional vector space over I, where £ > 1. In this case, we write
Aff(k,p) for Aff(V'); note that Aff(k,p) ~ Z’; X GL(k,p). Of course, if W is a subspace
of V, then W* < V* but it turns out that the opposite true. Let H < V* and define
W :={veV:v" e H}. Clearly 0 € W and if v,w € W, then (v + w)* = v*w* € H so
v+we W. If n € Fp, then (nv)* = (v+---4+v)  =v*--0v*= ()" € HsonveW.
Thus W is a subspace of V and H = W™, so every subgroup of V* has the form W* for
some subspace W of V' when V' is k-dimensional over F,,.

A group G is said to be of affine type if V* < G <Aff(k,p) and G is primitive for some
k-dimensional vector space V' over [F),.

Let U < GL(V) and W be a subspace of V. W is a U-invariant subspace of V if
(WHT = W for all T € GL(V). Of course V and {0} are always U-invariant. U is an
irreducible subgroup of GL(V) if the only U-invariant subspaces of V' are V' and {0}.

Proposition 2.2.1. Let V* < G <Aff(k,p) where k > 1. Then G is primitive if and only
if GNGL(V) is an irreducible subgroup of GL(V).

47



Proof. Since Aff(k,p)o = GL(V), Gy = GNGL(V). V* is normal in G and transitive, so
by Theorem 2.1.4, G is primitive if and only if {1y} = V; (read as (V*)y) is a maximal
Gy-invariant subgroup of V*.

Suppose that V' = {1y} is a maximal Go-invariant subgroup of V*. Let W be a
nontrivial Gg-invariant subspace of V. Then W* is a nontrivial subgroup of V*. Let T' € G|
and w € W. Then T7'w*T = (wT)* € W* since W is Go-invariant, so Gy < Ng(W*). Tt
follows that W* = V* so W = V. Thus G is an irreducible subgroup of GL(V').

On the other hand, suppose that G is an irreducible subgroup of GL(V'). Let H be a
nontrivial Gy-invariant subgroup of V*. Then H = W* where W is a nontrivial subspace of
V. Let T € Gypand w € W. Then (wT)* = T~ 'w*T € H as w* € H and H is Gy-invariant.
Thus wT € W, so W is a Gy-invariant subspace of V. Since (G is an irreducible subgroup
of GL(V), W = V. Thus H = W* = V* so V7 = {1y} is a maximal Gy-invariant
subgroup of V™. [

Proposition 2.2.2. Let G be of affine type. Then V* is the unique minimal normal
subgroup of G.

Proof. Let N be a minimal normal subgroup of G. If NNV* = {1y}, then N < Cg(V*) =
V* a contradiction. Thus N NV™* is not trivial, but it is a normal subgroup of G contained
in N,so NNV*= N, or N < V*. Since G is primitive, N is transitive, but then N is
regular since V* is; it follows that N = V*. Since V* is then an abelian minimal normal

subgroup of GG, we are done by Proposition 2.1.8. O

Thus if G is of affine type, then G has regular socle V* ~ V ~ Z’; where V* is the

unique minimal normal subgroup of G.

2.3 Twisted Wreath Type

Let P be a transitive permutation group on {1,..., k} where k > 2 and @ be the stabilizer
of 1 in P. Suppose that we have a homomorphism ¢ : @ — Aut(T) for some simple
nonabelian group 7" where Inn(T) < Qp. Then ¢ is a group action of @ on 7', so we may
define G :=T twrg P = gB x P where oB denotes the base group of the twisted wreath
product. P\Q ~ {1,...,k} since P is transitive, so there are k cosets of ) in P. Let
{1=91,99,--.,9x} be a left transversal for @) in P.

Proposition 2.3.1. In the notation given above, gB ~ T* and is the unique minimal
normal subgroup of G.

Proof. Recall from the end of Section 1.6 that gB = T} x --- x T where T; := {b €
oB:gib=1forall j #i} ~T. oB<G, so G permutes {171, ...,T}}. Let i and j be given,
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and let p := gigj’1 € P. Let b € T}, and suppose that [ # j. Note that if gigj’lgl € g:Q,
then g;'g; € Q, so | = j. Thus g;g; ' g1 ¢ 9:Q, s0

1= (gi9; " 90)b = (pg)b = gib*.

Then b € T}, and since (1,p) (b, 1)(1,p) = (b, 1), we get that (1,p) 'T;(1,p) = T;. Thus
G acts transitively by conjugation on {T},...,T%}, so oB is a minimal normal subgroup
of G by Proposition 1.5.2.

It suffices now to show that Cg(gB) is trivial. Let (b,p) € Ca(oB). Fixi € {1,...,k}.
Then (b,p) € Ca(T;), so if b; € T;, then

(b, 1) = (b,p) " (bi, 1)(b,p) = ((b~'b:d)", 1),
which implies that if j # ¢, then
1= g;bs = g;(070:b)? = ((pg;)b) " (9;)0f (pg;)b-
Hence, 0 € T;. Then (1,p) 'T;(1,p) = T7 < T;, so it follows that 77 = Tj; in particular,
we may assume that there exists a b; € T; such that b # 15. But b € T}, so
1 # g;b] = (pgi)bi = (pgibi) ™.

Then 1 # pg;b;, so pg;Q = g;Q). As i was arbitrary,
k
pe()aQe
i=1

Since P is transitive, every point stabilizer of P has the form ¢;Qg; " for some i, but P is
a permutation group and k£ > 2, so

k
ﬂgz‘ng’_I = {1}.
i=1

Thus p = 1. Moreover, if i € {1,...,k}, then b='b;b = b; for all b; € T;. Let t € T. Define
b; € T; by ¢g;b; :=t and g;b; :== 1 for all j # i (this is sufficient to define an element of B
since xb; = (zb;)? for all x € P). Then (g;b) 't(g;b) =t forallt € T, so g;b € Z(T) = {1}.
As i was arbitrary, b must also be the identity, and we are done. O

Let © := G\ P. Then G acts transitively on 2. Define o := P € Q. Then G, = P. Let
U be a normal subgroup of G contained in G,. If U is not trivial, then it must contain
oB as @B is the unique minimal normal subgroup of G, but then B < G, = P, a
contradiction. Thus G, is a core-free subgroup of W, so the action is faithful.

G is said to be of twisted wreath type if G acts primitively on Q). Since g B, = gBNP =
{1}, the socle of a group of twisted wreath type is a regular unique minimal normal
subgroup. Moreover, |Q| = [G : P] = |T'|*. Note that there are no simple conditions for G
to be primitive.
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2.4 Almost Simple Type

A finite group is almost simple if it is isomorphic to a group G for which Inn(T) < G <
Aut(T') for some nonabelian simple group 7.

Proposition 2.4.1. A finite group G is almost simple if and only if G has a simple
nonabelian socle.

Proof. Suppose that G is almost simple. Then Inn(T) < H < Aut(T) for some group
H isomorphic to G. Inn(T) is simple and normal in Aut(T'), hence H, so Inn(T) is a
minimal normal subgroup of H. Since Cy(Inn(T)) = {1} by Proposition 1.1.1, Inn(T) is
the socle of H by Proposition 1.5.6, so the socle of H is simple and nonabelian. Thus the
socle of GG is also simple and nonabelian.

On the other hand, suppose that G has a simple nonabelian socle, say T'. Let g € GG
and define ¢, € Aut(T') to be conjugation by g. Define ¢ : G — Aut(T) by g — ¢,. If
g € ker(p), then t = g~ tg for all t € T, so g € Co(T) = {1} by Proposition 1.5.6. Thus

@ is 1-1. Since ¢ is clearly a homomorphism and Inn(T) = Ty, we are done. [

A group G is said to be of almost simple type if G is a finite almost simple primitive
permutation group. This is the only isomorphism class of the finite primitive permutation
groups for which no group action will be identified.

This next result appears as part of the proof of the O’Nan-Scott Theorem in [14]. It
requires the Schreier Conjecture (Theorem 1.10.2).

Proposition 2.4.2 ([14]). If G is of almost simple type, then the socle of G is not reqular.

Proof. Suppose that G is of almost simple type. Then soc(G) = T for some simple non-
abelian group 7', and by the proof of Proposition 2.4.1 we have an embedding ¢ of G into
Aut(T) where T = Inn(T). Suppose that o € Q where G < S®. Then T, is normal in G,
since T" is normal in G, so we can define ¢ : G, /T, — Out(T) by g1, — gpInn(T). Then
for g,h € Go, gTo, = W1, < g 'heT < (g'h)p € Inn(T) < gplnn(T) =
hoInn(T), so 1 is well-defined and 1-1. It is also clearly a homomorphism. But 7T is
simple, so by the Schreier Conjecture, Out(T) is solvable. Hence, G, /T, is solvable.

Suppose for a contradiction that T,, = {1}. Then G, is solvable. Let N be a minimal
normal subgroup of G,. Then by Proposition 1.7.2, N is an elementary abelian p-group
for some prime p. T, = {1} < Cp(N) < T since if Cp(N) =T, then tn = nt for all n € N
and t € T, so N < Cg(T) = {1} by Proposition 1.5.6, a contradiction. Moreover, G,
normalizes C'r(N) since if a € G,, n € N and ¢ € Cp(N), then ana™ € N, so

1

(a tca)'n(a " ca) = a te M (ana M ea = a”Hana )a = n,

which implies that a7 tca € Cqo(N)NT = Cp(N) (as T < G). But G is primitive, so by
Theorem 2.1.4, Cr(N) =T, = {1}.
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N acts on T by conjugation since T'<I G. Let t € T. Since N is a p-group and
IN| = |0n(t)||Ny], either |On(t)| = 1 or p | |On(t)]. If |On(t)] = 1, then n~'tn = ¢ for all
n€ N,sote Cp(N)={1}. Thus if t # 1, then |0x(t)| > 1, which implies that p | |0y (t)|
for all t # 1. It follows that p | (|7'|—1), so pt|T’|. Suppose that ¢ | |T| where ¢ is a prime.
N acts by conjugation on the set of Sylow g-subgroups of T'. If |0y (S)| > 1 for every Sylow
g-subgroup S, then p | |6x(5)| for every Sylow g-subgroup S, so p | ng, but n, | |T], a
contradiction. Thus there exists a Sylow g-subgroup S of T for which n=1Sn = S for all
n € N; that is, N normalizes S.

Suppose that N also normalizes S’, another Sylow g-subgroup of 7. We know that S =
t715't for some t € T. Since N is abelian, N < Cg(N), but Cq(N)NT = Cr(N) = {1},
so NNT = {1}. Thus [T'N| = |T||N|. Now, N <TNNNg(S)<TN and p1|T|,so N is
a Sylow p-subgroup of TN, hence of TN N Ng(S) = Nry(S). But t ' Nt < Nry(S) since
forallm € N, t7'nt € TN and (t7'nt)" 'St nt) = t7'n~ (¢St 1 )nt = t71(n"1S'n)t =
t718't = S; thus t !Nt is also a Sylow p-subgroup of Nry(S), so there exists a t' € Ny (S)
with N = ¢/"}(¢t"*Nt)t'. Then since T < G, [tt',N] < NNT = {1}, which implies that
tt' € Cp(N) = {1}. Since t’ € Np(S), t € Np(S), but then t 1St =S =t"15t,s0 S = 5.
Thus S is the only Sylow g-subgroup of T" that is normalized by N.

Now I claim that Ng(N) < Ng(S). Let g € Ng(N). If n € N, then since gng™! € N
and N normalizes S,

g 'Sg=g"(gng ") "S(gng")g =n"" (g7 Sg)n.

Then N normalizes g~'Sg, but g~1Sg is a Sylow g-subgroup of T' (as T'< G implies that
g 1Sg <T), so we must have that S = g~1Sg as S is the unique such Sylow g-subgroup.
Thus g € Ng(S), as desired. Since N is normal in G, it follows that G, normalizes S, so
Gy, <GS <G.
If G, = G,S, then S < G,, but S <T,s0 S <T,={1}, acontradiction. If G,5 = G,
then
T=TNG=TN(G,S)=(TNG,)S=T,5=S5,

so T is a g-group. This is a contradiction since Z(T) = {1}. Thus G, < G,S < G,
contradicting the primitivity of GG, so T" must be regular. O

Thus if G is of almost simple type, then GG has a nonregular simple nonabelian socle.

2.5 Diagonal Type

Let T be a nonabelian simple group and k£ > 2 an integer. Let
A= {(a1,...,ax) € (Aut(T))* : Inn(T)a; = Inn(T)a; for all i,j € {1,... ,k}}.
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Then A < (Aut(T))F since if (ay,...,ax),(by,...,br) € A, then it is easy to see that
Inn(T)a;b; ' = Inn(T)a;b;* for all i,j € {1,... k}.

Let W := A x Sy where m € Sy acts on (ay,...,a;) € A by moving a; to the im-th
coordinate. It is routine to verify that this defines an action on A. Notationally, we have
that (aq,...,ar)™ = (@1z-1,...,ag—1) since a;;—1 gets moved to the i-th coordinate. For

notational ease, denote the elements of W by (ay, ..., ax)7 instead of ((ay,...,ax), 7).

Let M := (Inn(T))* <W. Then M < W since Inn(T) < Aut(T). Let
T,={(1,...,a;...,1) € W :q; € Inn(T)}.

Then T; ~ T for each i € {1,...,k}, and clearly M =Ty x---xT}. Let (ay,...,a,)m € W.
Then ((ay,...,a1)7) ' Ti(ay, ..., ap)7 = Tiy for all i € {1,... k}:

((a’h B Jafk)ﬂ-)_lfri(a‘b s 7ak)7T

= (ala, . ya )t ) (ar, .. Inn(T)ay, .. .ap)" 7 '

= (1,...,a; " Inn(T)ay, ..., 1) (in im-th spot)
Tir.

Let 7 and j be given. There exists a 7 € S, < W with iw = j, so 7 'Tym = Tj;. Then W
acts transitively by conjugation on {77, ..., T}, so M is a minimal normal subgroup of W
by Proposition 1.5.2. Moreover, let g := (ay,...,ax)m € Cyw(M). Then g € ﬂle Cw(Ty),
so, in particular, Tj, = ¢ 'T;g = T;. Thus 7 is the identity, but then a; Laa; = a for all
a € Inn(T), so a; € Cayr)(Inn(T)) = {1} for all i. Hence, Cy (M) = {1}, so M is the
unique minimal normal subgroup of W.

Let Q be the right coset space W\D where D := {(a,...,a)m € W} ~ Aut(T) x Sk.
Note that |Q| > 2, for if D = W, then ab™! € Inn(T) implies that a = b, so if we
take a = 17 and any 17 # b € Inn(T), then we get a contradiction. Of course W acts
transitively on €. Let o := D € Q so that W, = D. Since M <W, MW, < W. Let
(ay,...,a;)m € W. Then

(ay,...,ap)7 = (aray?, ..., apa; HNay, ..., a1)T € MW,

since a;a; ' € Inn(T) for all i € {1,...,k}. Thus W = MW, so M is also transitive on
2. Note that M, ={(a,...,a) e W :a € Inn(T)} ~ T, and let U be a normal subgroup
of W contained in W,. If U is not trivial, then it must contain M as M is the unique
minimal normal subgroup of W, but then M < W,, so M = M,, which is a contradiction
since k > 2. Thus W, is a core-free subgroup of W, so the action is faithful.

A group G is said to be of diagonal type if M < G < W and G is primitive. The term
diagonal is used since M, is a full diagonal subgroup of M and Q ~ M /M,,.

For G < W, let Pg:={m € Sk : (a1,...,a,)m € G for some (ay,...,a;) € A} < Sk.
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Proposition 2.5.1 ([8, p. 123]). Let G be a subgroup of W containing M. G is primitive
on Q if and only if Pg is primitive on {1,...,k} or Po = {1} and k = 2.

Proof. Suppose that P := Pg is not primitive. If P # {1}, then k& > 3 since if k = 2,
then P = S5, which is primitive, a contradiction. If we assume instead that k& > 3, but
P = {1}, then it is routine to verify that Ti,..., T} are all minimal normal subgroups
of A = G, which implies that G is not primitive as a primitive G can have at most two
minimal normal subgroups. Thus we may assume that £ > 3 and P # {1}. Recall that
M <G and M is transitive.

Since P is not primitive and is nontrivial, there exists a nontrivial P-congruence ~ by
Proposition 2.1.1. Let L := {(a1,...,ax) € M i ~ j = a; = a;} < M. Since ~ is
nontrivial there exist ¢ and j such that ¢ # j but i ~ j. Let a,b € Inn(T') with a # b, and
let a; := a and a; := b for [ # i. Then (ay,...,a;) € M\ Lsincei ~ jbut a; = a # b= a;.
Thus L < M. Again since ~ is nontrivial, there exist ¢ and j with ¢ # j and ¢ = j. If
[i].. denotes the equivalence class of i, then [i|. < Q. Let a; := a if [ € [i] and a; := b if
[ ¢ [i]~. Then (ay,...,ax) € L\ M,. Thus M, < L.

Let (ay,...,a;) € L and (c,...,c)m € G,. Then

((c,...,o)m) Hay,...,ax)(c,...,c)T = (¢ tairc, ..., c tagc).

Suppose that ¢ ~ j. Then in~* ~ jn~! since ~ is a P-congruence, S0 @;;-1 = a;,-1. Thus

(cYayz-rc,...,c tage-1c) € L, so G, < Ng(L). But M, < L < M, so by Theorem 2.1.4,
G is not primitive.

Suppose on the other hand that GG is not primitive. Then by Theorem 2.1.4, there exists
an L < G such that M, < L < M and G, < Ng(L). Let p; be the i-th projection map
from L to Inn(T) for each i € {1,...,k}, and let L; := ker(p;) for each ¢ € {1,... k}.
Define ~ on {1,...,k} by i ~ j if and only if L, = L;. Then ~ is clearly an equivalence
relation.

Let m € P. Then there exists a k-tuple (ay,...,a;) € A with (ay,...,a;)7 ' € G. The
element (aja;', ..., ara;') € M < G and

-1 -1

(ar,...,ap)7 ' = (arai?, ... ara;(ay,. .., a1)7 7,

so letting a := ay, we get that g := (a,...,a)7 ' € G, < Ng(L). Thusif I := (ly,...,1l;) €
L, then (a 'liza,...,a Hyza) = g7tlg € L. Tt follows that [ € Lz < Iy =1 <
atiza=1 <= gllge L, Now,if L; = L, thenl € L;;, <= g llge L, =L; <
l € Lj, s0 Liz = L. Conversely, if L,z = Ljz, thenl € L; <= glgt € Lz = Lir <
l € L;,so L; = L;. Thus L; = L; if and only if L;z = L;;. That is, i ~ j if and only if
1T ~ Jm, SO ~ is a P-congruence.

If a € Inn(T), then (a,...,a) € M, < L and (a,...,a)p; = a, so p; is onto Inn(T)
for all . Then L/L; ~ Inn(T), so L/L; is simple for all i. Clearly N\, L; = {1},
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so if the L; are all distinct, then by Lemma 1.4.4, L ~ (Inn(T))* = M, contradicting
L < M. Moreover, if the L; are all the same group, then L; = ﬂle L; = {1}. But then
M, ~ Inn(T) ~ L/Ly ~ L, contradicting M, < L. Thus ~ must be nontrivial.

Hence, ~ is a nontrivial P-congruence on {1,...,k}. If k = 2, then every P-congruence
is trivial, so k > 3. If P is not transitive, then P is not primitive. If P is transitive, then
since we have a nontrivial P-congruence, P is not primitive by Proposition 2.1.2. Thus in
either case, k > 3 and P is not primitive. O

Note that since Py, = S and S}, is primitive for all £ > 2, W itself is of diagonal type.

Proposition 2.5.2. Let G be a group of diagonal type. Then G has socle M. Moreover,
if Pg is primitive on {1,... k}, then M is the unique minimal normal subgroup of G, and
if Po ={1} and k = 2, then G has two minimal normal subgroups.

Proof. Co(M) < Cw (M) = {1}, so M is the socle of G. Suppose that Pg is primitive on

{1,...,k}. Let ¢ and j be given. Since Py is primitive, Pg is transitive, so there exists a
7w € Pg with i = j. Then (aq,...,ax)7 € G for some (ay,...,a;) € A, and

((ar,...,ap)m) " Ti(ay, ... a7 = Tir = T;.

Thus G acts transitively by conjugation on {7}, ..., T}, so M =T} X - - - X T}, is a minimal
normal subgroup of G, hence is the only one. Suppose then that P = {1} and £ = 2. In
this case, it is easy to see that T} and T are both minimal normal subgroups of A = G. O

Thus G has nonregular nonabelian socle Inn(T)*, which is either a minimal normal

subgroup of G or consists of two regular minimal normal subgroups 77 and T,. Also,
Q] = [M : M,] = [T
The following is not really needed but is interesting.

Proposition 2.5.3. W is an extension of M by Out(T') x Sk.

Proof. Define ¢p : W — Out(T) x Sk by (a1,...,a)7 — (Inn(T)ay, 7). Then for all
(ay,...,ap)m, (ay, ..., a)7" € W,

(a1, ...,a)m(d, ... a)7"y = (Inn(T)ayad), ')
= (Inn(T)a,a,., ")
= (@10}, ..., aga), ) TP
= ((ay,...,ap)m(ay,. .., a, )7 ),

so ¢ is a homomorphism. To see that 1 is onto, let (Inn(T)a,m) € Out(T) x Sk. Then
(a,...,a)m € W and (a,...,a)m) = (Inn(T)a,n). Lastly, let (ai,...,a)7 € ker ().
Then 7 is the identity of Sk, and a; € Inn(T). But then a; € Inn(T) for all i € {1,... k},
so (ay,...,a;)m € M. Conversely, if (ay,...,ar) € M, then clearly (ay,...,ax) € ker(y).
Thus ker(y) = M, so W/M ~ Out(T) x Sk. O
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It follows that if G is of diagonal type, then G is an extension of M by a subgroup of
Out(T) x Pg and G, is isomorphic to a subgroup of Aut(7T') x Pg.

Last of all, I prove that we essentially cannot make W any larger. This result is taken
from [8, p. 122], but the proof is somewhat different because [8] constructs groups of
diagonal type differently (although analogously).

Proposition 2.5.4. W = Nga(M?).

Proof. Identify W with W* for simplicity. Since M W, W < Nga(M) =: N. Let n € N.
Define 0,, € Aut(M) by m — n~'mn. Note that M,0, = n"*M,n = M,,. But M is
transitive on €2, so there exists an m € M with an = am. Then M,0,, = m~*M,m. Define
0: N — Aut(M) by n — 6,. Then N is clearly a homomorphism with kernel Cga(M).
Suppose that Cga(M) # {1}. Cga(M) < Nga(M), which is primitive since it contains
W, so Cga(M) is transitive. Then M is semiregular by Proposition 1.2.1, a contradiction.
Thus Cge(M) = {1}, so N is embedded into Aut(M). Now, Inn(T)* ~ T* so Aut(M) ~
Aut(T*). In the proof of Proposition 1.6.1, we saw that every element of Aut(T*) has the

----------

(t1,...,tx) € TF since M0, = m~*M,m.
Let t € T. Since (t,...,t) € U, there exists a k-tuple (¢,...,t') € U such that

(oo ti) M ) () = (e DY, an)e

Then ta; = t; 't't;, for all i, so ti(ta;)t;} =t = tjw(taj)t;rl for all 7 and j. Rewriting, we

get that ta; = t;rltjw(taj)t;}tm. Since a; is an isomorphism,

taga;t = (5 tim)ay ) T (5 i),

but (t;'tiz)a;' € T and t was arbitrary, so a;a;' € Inn(T). Then since Aut(T*) ~
Aut(T)* x Sy, we can embed N into Aut(T)* x S), where the image of n € N is some
(ay,...,ax)m for which a,-aj_l € Inn(T) for all i and j. That is, the image of N in Aut(T)* x
Sy is contained in W. Thus W = Nga(M). O

2.6 Product Type

Let A :={1,...,n} where n > 1, and let H be a primitive permutation group on I where
H is of almost simple type or diagonal type. Define W := H wra S,,. Since W ~ H" x S,,,
we may write the elements of W as (hy, ..., h,)m where h; € H for all i € {1,...,n} and
7 € S,. Then the product action of W on = I'™ (instead of I'®) becomes

™ h T h‘n7r7
(71777n)<h1 7777 hn) = (7]_7:-—117"'777”7_11)'
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This action is faithful by Proposition 1.6.2 since I' must contain at least two elements (or
else H = {1}, which cannot be) and since S,, and H are both permutation groups on A
and I" respectively.

Let v € I', and let o := (7,...,7) € Q. Suppose that (hy,...,h,)T € W,. Then

so h; € H, for all ¢; that is, (hy,..., hy)7 € H} xS, = H, wra S,. It is not hard to see
then that W, = H, wra S,.
Suppose that H has socle K. Let M := K". Then

M, =W,NK"=(H'»S,)NK"=H'NK" =K.

Note that since H is of almost simple type or diagonal type, K is not regular (see Propo-
sition 2.4.2), so H is not regular in either case. Then since A is finite, S, is transitive
on A, and H is primitive but not regular on I, W is a primitive permutation group by
Proposition 2.1.6. Since K < H, M <W. Thus M is transitive on ).

Foreachi e {1,...,n},let K; :={(1,...,k,...,1) e W: k € K}, where each k € K is
in the i-th coordinate. As we saw for groups of diagonal type, if (hq,...,h,)m € W, then
((hi,...,ho)m) Y Ki(hy, ..., hy)T = Kir. Thus W acts on {Kj, ..., K,} by conjugation.

Proposition 2.6.1. If M < G < W, then M 1s the socle of G.

Proof. Let g := (hy,...,hy)m € Cq(M). Then g € N, Ca(K;), so Kirx = ¢ K9 = K,
for all i € {1,...,n}. Thus 7 is the identity. But then g = (hy,...,h,) € i, Ca(K),
so for all i € {1,...,n}, h; € Cy(K), which is trivial by Proposition 2.1.10 as K is the
nonabelian socle of primitive H. Then g is the identity, so Cq(M) = {1}. Thus M is the
socle of G by Proposition 1.5.6. [

A group G is said to be of product type it M < G < W and G is primitive. When H
is of almost simple type or diagonal type, G is said to be of almost simple product type or
diagonal product type respectively.

Proposition 2.6.2. If G is of product type, then G acts transitively on {K,..., K,} by
conjugation.

Proof. Suppose that G is of product type. Note that M = K; x --- x K, and M, =
K,x - xK,=(MyNKj) XX (MyNK,)=(K1)s X% (K,)s. Moreover, either K;
is simple for all 7 or (K;), is a full diagonal subgroup of K; for all i, so by Lemma 2.1.12,
G acts transitively on {K7,..., K,} by conjugation. ]
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According to [14, p. 391], the converse of Proposition 2.6.2 is also true for a group G
such that M < G < W, but I was unable to prove it. Fortunately, it has no bearing on
the proof of the O’Nan-Scott Theorem.

The next result tells us when a group of product type has one or two minimal normal
subgroups. I was unable to prove (iii), but again, this result has no bearing on the proof
of O’Nan-Scott and is included here because it is interesting. Recall that when H is of
diagonal type, either Py = {1} or Py is primitive.

Proposition 2.6.3 ([14, p. 391]). Let G be a group of product type.

(1) If H is of almost simple type, then M is the unique minimal normal subgroup of G.
(11) If H is of diagonal type and Py = {1}, then G has two minimal normal subgroups.

(111) If H is of diagonal type and Py is primitive, then M is the unique minimal normal
subgroup of G.

Proof. (i) Suppose that H is of almost simple type. Then K is a nonabelian simple
group. Since G acts transitively on {K7y, ..., K,}, all of which are nonabelian and simple,
M = K; x ... x K, is a minimal normal subgroup of G by Proposition 1.5.2, and we are
done.

(ii) Suppose that H is of diagonal type where Py = {1}. Then H < {(aj1,as) €
Aut(T) x Aut(T) : Inn(T)a; = Inn(T)ay} for some simple nonabelian group 7', so K =
Inn(T) x Inn(T). Let

Ny ={((a1,1),...,(an,1)) : a; € Inn(T) for all i}.

Define Nj similarly, so that M = N; x N,. It is routine to verify that N; and N5 are normal
subgroups of G. For i € {1,...,n} and j € {1,2}, let T} ; be the set of all elements of K;
of the form ((1,1),..., (a1, as),...,(1,1)) where a; = 1 if l # j. Then K; = T;; x T; 5 and
N; =Ty; x---xT,,. Since G is transitive on {K1,..., K, }, given i,l € {1,...,n}, there
exists a g € G with g7 'K;g = K. But then g7'T; ;g =T, for j = 1,2 (as Py = {1}),s0 G
acts transitively on the simple factors of Ny and Ny; that is, N; and Ns are both minimal
normal subgroups of G. O

Thus if G is of product type, then G has a nonabelian nonregular socle K™ where K is
the socle of H. K™ is either a nonregular unique minimal normal subgroup of G or is the

direct product of two regular minimal normal subgroups of G. Also, |Q2| = |T'|".

2.7 The O’Nan-Scott Theorem

Note that the five types described above are all pairwise disjoint: groups of affine type are
the only ones with an abelian socle, groups of twisted wreath type are the only ones with
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a regular nonabelian unique minimal normal subgroup, and groups of almost simple type
are the only ones with a simple nonabelian socle. It remains to show that a group cannot
be of diagonal and product type.

Suppose that G is of diagonal and product type, where G has socle T* (k > 2) for some
nonabelian simple group 7. Then, using the notation from the diagonal and product types,
G < AxS,and G < H wra S, for some n > 2. Since the socle of GG is also K™, where K is
the socle of H, H has socle T+. If H is of almost simple type, then K ~ T so k =n. Also
H < Aut(T). Then T* has point stabilizers {(a,...,a) : a € Inn(T)} and {(hy,..., hy) :
h; € Inn(T),}, which must be permutation isomorphic in S, hence conjugate in S by
Proposition 1.2.4. Then there exists a 0 € S with (¢ a0, ..., 07 ac) =07 (a,...,a)0 =
(hi,...,hy) foralla € Inn(T) and h; € Inn(T'),, which is clearly not so. If H is of diagonal
type (acting on T'), then || = |T|= L. But then (|T|»~1)" = [T|" = || = |T|*! since G
is of diagonal type, so k —n =k — 1, or n = 1, a contradiction.

Typically, questions about finite permutation groups can be reduced via the O’Nan-
Scott Theorem to the almost simple case. It is this isomorphism class which is the most
difficult to work with. Now that the classification of the finite simple groups is complete,
it is hoped that the properties of almost simple groups will become more clear. See [1] for
details.

At last we have reached the main result of this thesis.

Theorem 2.7.1 (O’Nan, Scott). Let G be a nontrivial finite primitive permutation group
on Q). Then G is permutation isomorphic to a group that is either of affine type, twisted

wreath type, almost simple type, diagonal type, or product type.

The proof of the O’'Nan-Scott Theorem is broken down into several propositions. So
for this section, let G' be a nontrivial finite primitive permutation group on €2, and let M
be the socle of G. Then M is isomorphic to T* for some simple group 7" and some positive
integer k£ by Theorem 2.1.9. Write M =T} x --- x Ty where T; ~ T for all i € {1,...,k}.
Let a € €. Note that since G is primitive and nontrivial, G, is a maximal subgroup of
G and M, is a maximal G,-invariant subgroup of M by Theorem 2.1.4. In particular,
G = MG, since the transitivity of M implies that G, < MG, < G. Also, M, < M since
M is transitive and €2 is nontrivial.

Proposition 2.7.2 ([19, p. 200]). Suppose that T is abelian. Then G is permutation
isomorphic to a group of affine type.

Proof. Since T is abelian, G must have a unique minimal normal subgroup by Proposition
2.1.8, namely, M. Moreover, M is an elementary abelian p-group for some prime p, and
M is regular, so if |[M| = p*, then |Q| = p*. Let V be a vector space of dimension k over
the field F),.
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Let 6 : M — V be a Z-isomorphism (which must exist since M ~ ZF ~ V', where we
consider the additive group of V). Note that G = M x G, since M NG, = M, = {1}, so
every element of G can be written uniquely in the form ma where m € M and a € G,.
Define ¢, : M — M by m +— a'ma. Then ¢, is a bijection.

Define ¢ : G —Aff(k,p) = V* x GL(k,p) by ma — (m0)*(07'¢,0). Clearly 6~ ¢,0 is a
bijection which maps from V onto V for all a € G. Let z,y € V. Then

(x+y)0 0 = (207 Yo~ 1) .0 (6~ homomorphism)
= (a 'w0 aa"y0ta)0
= (e '207'a)0 + (a"'yf~'a)f (6 homomorphism)
= 207 9,0 + y0 ' pa0

and if n € [F,, then

(n)0~1p.0 = (vVO~1)"p,0
= (a (v~ 1)"a)l
(v6~7)

= n(vh1g.0).
Thus 6~ '¢,0 € GL(k,p) for all a € G, so v is well-defined.

To see that v is a homomorphism, let ma, m’a’ € G. Then,

= (m0)* (07" ¢u0)(m'0)* (0~ pu0)
= (m0)* (071 a0)(m'0)* (0~ $a0) ' (07" 9a) (0" Pr0)
= (m0)*(m'0(0~"¢a0)~")*(0~" daat)
= (mO)*(m'da-10)* (0" Paart)
= (mb + am’a10)* (07 pou0)
= (
= (
= (

*

mo

(may)(m'a’y)

mam’'a=)0)* (07 poq0)
mam’a=")(aa’))y

mam’a’ ),

as desired.

Suppose that ma € ker(t). Then (m8)*(0~1¢,0) = 1y, so (md)* = 0* and 7' ¢,0 = 1y.
Then m# = 0, but # is an isomorphism, so m = 1. We also have that ¢, = 01071 = 1),
so a”'ma = m¢p, = m for all m € M. Then a € Cq(M) = M, but a € G,, so a = 1. Thus
ma = 1 and ¢ is 1-1.

Note that M1 = V* since # maps onto V. Then V* = My < Gy, so G is transitive.
Of course G is also transitive, so to show that G is permutation isomorphic to G, it
suffices to show that G, = (Gv)y by Proposition 1.2.3. But (Gv)y = GynAft(k,p)y =
GY N GL(k,p), so we must show that G, = GY N GL(k,p). Clearly Gov» < Gy N
GL(k,p) by the construction of ¢». On the other hand, if x € Gy N GL(k,p), then x =
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(ma)y = (mO)*(0~1p,0) for some m € M and a € G,, but (mh)* = x(0~'¢,0)"" €
V*NGL(k,p), so (mf)* = 0*. Thus m =1, so x = arp € G, and we are done. Hence,
(G is permutation isomorphic to G, which is a group of affine type since G is primitive

and V* < Gy <Aff(k,p). ]

Suppose that T is not abelian and that k£ > 2, and suppose further that there exist
groups Xji,..., X, such that M = X; x -+ x X, and M, = (X1)s X -+ X (X,,)a Where
X; is simple for all i or (X;), is a full diagonal subgroup of X; for all 7. I call this the
simple condition and the diagonal condition respectively. Note that in either case, the
requirements for Lemma 2.1.12 are satisfied. For the rest of this section, I will write
X := X; and N := Ng(X) whenever one of these conditions occurs.

Lemma 2.7.3. If the simple condition or the diagonal condition is satisfied, then X, is a
mazximal N,-invariant subgroup of X. Moreover, X, <X or N,Cg(X) < N.

Proof. By Lemma 2.1.12, G, acts transitively on {X,..., X, }, so there must exist 1 =
91,92, gn € Gy with g7 ' X g; = X; for all i. Define v; : X — X; by x + g; 'xg; for all
i € {1,...,n}. Then each v, is an isomorphism. Recall that if g € G, and ¢7'X,;g9 = X},
then g7 (X;)ag = (X;)a; in particular, if a € N,, then a™'X,a = X, so N, normalizes X,,.
Moreover, if X, = X, then M, = M, a contradiction. Thus X, is a proper N,-invariant
subgroup of X.

Suppose that L is an N,-invariant subgroup of X properly containing X,. Let R :=
L X Ly; X +++x Lvy,. Then M, < R< M. For a € G,, define 7, € S,, by a ' X;a = X;,.
Then for each i, g, -1ag; ' ¢ N, since

gia_lgi;l,ngm;lagi_l = gia_le;lagi_l =g; X -1 X,

ing 'raJi
but Ny < Ne(L), so g;.—1ag; " € Na(L). Now let r:= (I1,ly7s, ..., lyym) € R. Then

atra=a (I, lyya, . .. lyyn)a = (a_l(llﬁrylw;ﬁa, . ,a_l(lm;rymra_l)a),
but a='ra € Xy x -+ x X, = X x X5 X - -+ X X, so for each i, a = (I, -17;,-1)a = z;%
for some x; € X. Then

Ti = gia_l(liwgl%wgl)ag;l = <9m;1a9f;1)_llm;1(gm;lagzﬂ) €L

by the above, so a™'ra € R. Thus G, < Ng(R), so by the primitivity of G, R = M, or
R = M. But if R = M,, then L = X, a contradiction, so R = M, which implies that
L = X. Thus X, is a maximal N,-invariant subgroup of X.

Now suppose for a contradiction that X, is not a normal subgroup of X and that
N,C(X)=N. Let S:= {z7'yz:r € X,y € X,}). Then X, < S < X since if X, = S,
then X, < X. Moreover, N, < Ng(95) since if a € N,, then for all x € X and y € X,,
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a trlyza = (a'za) " (a"'ya)(a " za) € S because a'ra € X and a"'ya € X,. Since
X, is a maximal N,-invariant subgroup of X, S = X. Then

X ={zlyz:re X,y e X,})
< {al'ya:a € Co(X)Nyy € Xo}) (since X < N = N,Cq (X))
= {a'ya:a € N,y € Xo} (since X, < X)
= X,.

But then X = X, a contradiction. O

Note that the Schreier Conjecture (Theorem 1.10.2) is required for the proof of the
following proposition.

Proposition 2.7.4. If the simple condition is satisfied and N,Cq(X) = N, then G is
permutation isomorphic to a group of twisted wreath type.

Proof. We may assume without loss of generality that X; = 7; for all . Recall that
G, acts transitively on {T1,..., Ty} by Lemma 2.1.12; in particular, there exist elements
1=g1,92,...,9x € Gy such that g;'Tjg; = T (note that this is opposite the usual setup).
Since N,Cq(T}) = N, it follows from Lemma 2.7.3 that (7}), is a proper normal subgroup
of Ty, but Ty is simple, so (T1), = {1}. Hence M, = {1}, so M is regular.

Let n € N,. Define ¢, : Ty — Ty by t — n~'tn. Define ¢ : N, — Aut(T}) by n — ¢,.
Then ¢ is a homomorphism with ker(p) = Cq(T1) N Ny = Co(Th) N G,. If v € Inn(TY),
then there exists a t; € T} such that ty = t;'tt, for all t € T1. T} < N = N,Cq(T}), so
t1 = nc for some n € N, and ¢ € Cg(11). Then for all t € 11,

ton =n"ttn = (tie™") (i) = c(ty)eTt =ty

S0 v = ¢, € Nyp. Thus Inn(Ty) < Nap, so we may let Z < N, be the preimage of
Inn(Ty) under ¢.

Note that Z/Cy, (T}) is simple and nonabelian: if z € Z, then z¢ = ¢, for some t € T}.
If 2/ € Z where 2/¢ = ¢y and 2z = 2/, then ¢, = @y, so t7tat = t'"lzt’ for all z € Tj.
Then t't™' € Z(Ty) = {1}, so t = ¢'. Thus we may define x : Z — T} by z + t where
2@ = ;. x is an onto homomorphism since 7} < Z and ¢ is a homomorphism. Further,
z € ker(x) if and only if z¢ = ¢y, which is true if and only if 27!tz = ¢ for all ¢ € T}. Thus
ker(x) = Cn,(T1), giving the desired result.

I claim that M is the kernel of the action of G on {T},...,T;}. Let Y be this kernel.
Then y 'Tyy =T, foralli € {1,...,k} andy € Y. Clearly M <Y ,s0Y =Y N (G, M) =
Y,M. T will prove that Y, = {1}. First, embed Y,M/M into Out(Ty) x --- x Out(T})
as follows: define 0 : Y — Out(Ty) x --- x Out(T}y) by y — (Inn(Ty)y*™, ..., Inn(Ty)y**)
where for all 4, y* € Aut(T;) is defined by t — y~'ty. 0 is clearly a homomorphism. Let
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y € ker(d). Fix i € {1,...,k}. Then y* € Inn(T;), so for all t € T;, y~ 'ty = ty* =
t;'tt; for some t; € T;. Then yt;* € Cg(T;). As i was arbitrary, y € ﬂle Co(T)T; =
(N, Ca(T)Ty - - - Ty by Lemma 1.1.3. But {1} = Co(M) = N, Co(T;) again by Lemma
1.13,soy € Ty---Tp, = M. Thus ker(f) < M. On the other hand, let m € M. Write
m = (t1,...,t). Then if t € T}, tm* = m~tm = t; 'tt;, so m* € Inn(T;) for all i. Thus
M = ker(0), so Y/M is embedded into Out(T}) x - -+ x Out(Ty), as desired. Moreover, by
the Schreier Conjecture, Out(T;) is solvable for all 7, so OQut(Ty) x --- x Out(T}) is also
solvable by Proposition 1.7.1. Since Y, "M = M, = {1}, Y, ~ Y. M/M = Y/M, so
Y, is solvable. Then Y,Cn_(T1)/Cn,(T1) ~ Y, /(Yo N Cn,(T7)) is also solvable, again by
Proposition 1.7.1. Now Y <G, so Y, <IN, asis Cn_(T1). Thus Y,Cn,_(T7) <N,. Moreover,
Z 4N, since Inn(T) < Nyp. Let C := Cy,(T1). Then

[Z/C,Y.C/C) < Z/CNY,C/C < Z/C.

IfZ/CnY,C/C = Z/C, then Z/C < Y,C/C, which is solvable, so Z/C'is solvable, but Z/C
is simple and nonabelian, a contradiction. Thus since Z/C' is simple, Z/CNY,C/C = C/C,
so [Z/C,Y,C/C] = C/C. 1t follows that [Z,Y,C] = C. Let t € T; and y € Y,. Then
t,y] € [Z,Y,C] = C < Cg(Th), but [t,y] € Ty since y Ty = Ty, so [t,y] = 1. As
t € Ty was arbitrary, y € Cg(T1). Thus Y, < Cg(T1). Let z € T; and y € Y,,. Note that
giyg; L € Y, for all i since Y, < G,. Also, g; 'zg; € T1. Then

y 'y = gi(9; 'we) N (g wgi) (9 we) gt = gi(g;  wg)g = =,

soy € N, Ca(T;) = {1}. Thus Y, = {1}.

Let P := G,. Then P acts transitively on {7}, ..., T;}. For convenience, write p~'T;p =
T;, (abusing the notation somewhat). This action is also faithful, for if p € P is in the
kernel of the action, then p € M, but PN M = M, = {1}, sop=1. Let Q := P, = N,.
Then ¢ is a group action of Q on Tj. I will denote this action by ¢4 := ¢ 'tq. I claim that
G is permutation isomorphic to T} twrg P.

Note that {g1,...,g9x} C P. In fact, L := {g1,...,gx} is a left transversal for @) in P:
suppose that ¢;Q = g;Q. Then g;'g; € Q = N,, so (g; 'g;)"*T1(g; 'g;) = Ti. Then

Ty =g;Thg; " = g;(97 ' 95) "' Tulg; '9)9; ' = T,
soi=j. If pe P, then pTip~ = T; for some i, which implies that
(™19 Tip~"9i = g; 'Tigi = Th.

Thus p~tg; € Q, so pQ = ¢;Q and we have our left transversal. Every element p of P can
then be written uniquely in the form pg, where p € L and ¢, € Q.

62



Recall that B is the base group of the twisted wreath product 77 twrg P. Let
m:= (ty,...,tx) € M. Define v, : P — T} by p — p~'t;p when p = g;. First I show that
Ym € oB. Let p € P and ¢ € ). Suppose that p = g;. Then we also have that pg = g;, so

(Pm)? = ¢ (0~ tip)q = (p@) " ti(pq) = (p@)Vm,

as desired. Note that 1, = ¥, for all m,m’ € M. Moreover, I claim that if m € M
and p € P, then ¢! = 1,-1,,,. For each i, z; := gl.;l_lpgi € ( since

(95,1090 " T1 (9,5 09:) = 9 0~ (Tip-1)pgi = 97 Tip-1p9 = Th.
Let z € P and suppose that T = g;, so that x = g;q,. Then

b, = (gip—lxi%v)wm
= (iqe) " (gip-19m) (€igz)  (since z,q, € Q)
= q:p_lxi_lgi;l—ltipflgipﬂ%%
= (9iqx) ' (p'tip-1p)(9:qx) (subbing in for z;)
= TPp-1mp (as p~tmp = (p~Mt1p-1p, .., P Hip-1p),

as desired.
Since G = MG, = MP and MNP ={1}, G=M x P. Define ¢ : G — T} twrg P by
mp +— (Y, p). Let mp, m'p’ € G. Then

(mp)y(m/p')y (wm,p)(ym L)
= (Y, ,0P")
= (Ym¥pmp—1,00")
= (

= (

= (

%pmp ,pp)

so 1 is a homomorphism. Let mp € ker(¢)). Then ¢, = 1p and p = 1, so 1 = g;1,, =
gi_ltl-gi for all 4. Thus ¢; =1 for all ¢, so mp = 1. Hence, v is 1-1. Let (b,p) € T} twrg P.
Suppose that zQ = yQ where x,y € P. Then since y 'z € Q,

wb = (yy~'o)b = (y0)! T = (y~'x) " (yb)(y '),

so z(zb)x™! = y(yb)y~! for all z and y satisfying @ = y@. Thus we may define t; :=
x(xb)z™t for all i € {1,...,k} where we may take z to be any element with T = g;.
Moreover, z(xb)z~" € xTiz™! = g;q.Thq; 9, = ¢:Thg;* = T;. Thus m = (ty,...,t,) € M
and x,, = z 7',z = 7 (z(xb)x™ )z = xb for all x € P, so mpy = (¢, p) = (b,p) and
¢ is onto. Thus % is an isomorphism. Since Go¢p = Py = P = (T} twrg P),, G is
permutation isomorphic to T} twrg P, a group of twisted wreath type. O]
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Proposition 2.7.5. Suppose that T is not abelian and that k > 2. If M, is a full diagonal

subgroup of M, then G is permutation isomorphic to a group of diagonal type.

Proof. Let W be the group of diagonal type that is an extension of Inn(T})* by Out(T) x
Sk. Then W has socle Inn(T;)* and acts transitively and faithfully on Q' := W/W,,
where o/ := D (in the notation of a group of diagonal type). Since M, is a full diagonal
subgroup of M, for i € {2,...,k}, there exist isomorphisms 7; : T} — 7T; such that
M, = {(t,ty2,...,t) : t € T1} (see (1) in the proof of Lemma 1.4.1(i)). Further,
every element of M can be written uniquely as (t1,t27e, . .., txyx) for some ¢y, ... tx € Ty.
Define 0 : M — (Inn(Ty))* by (t1,tava, ..., tiyk) — (On,,-..,0;,) where 0y, : Ty — Ty is
conjugation by t;. Since ~; is a homomorphism for all ¢ and 6, = 6,6, for all t,t' € Ty,
0 is a homomorphism. If (t,to7s, ..., tx ) € ker(0), then t = t0,, = t;'tt; for all t € Ty,
sot; € Z(Ty) = {1} for all i. Thus # is 1-1. @ is clearly onto, so 6 is an isomorphism.
Moreover,

M0 ={(a,...,a):ac Inn(T})} = (Inn(T1)")w.

Since both M and Inn(T))* are transitive, M is permutation isomorphic to Inn(T;)*
by Proposition 1.2.3. Then there exists a permutation isomorphism ¢ : Ngo(M) —
Ngo (Inn(T1)*) such that my = m@ for all m € M by Proposition 1.2.5. Note that
G < Ngo(M) since M S G. Then

Inn(T1)* = My < Gyp < Ngo(M)yp = Ngo (Inn(T))*) = W

by Proposition 2.5.4. G is primitive since G is, so G is permutation isomorphic to G, a
group of diagonal type. ]

Proposition 2.7.6. If the simple condition is satisfied and NoCe(X) < N or if the di-
agonal condition is satisfied and n > 2, then G is permutation isomorphic to a group of

almost simple product type or diagonal product type respectively.

Proof. Again there exist 1 = g1, o, ..., 9, € Go with g; ' Xg; = X; for all i since G,, acts
transitively on {Xi,..., X, } by Lemma 2.1.12. Rearranging indices as needed, we may
write X =T x --- x T, for some m > 1 since X < M.

Note that N = N, XCq(X): X5 x -+ x X, clearly centralizes X, so M < XCg(X).
Moreover, X is a normal subgroup of M, so M < N (in fact it is a normal subgroup). Then
N=NNG=NN(GoM)= N,M, which implies that N = N,M < N, XCq(X) < N as
XCe(X)<N. Thus N = N, XCq(X).

Moreover, note that if the diagonal condition is satisfied, then since X is a full diagonal
subgroup of X, X, is self-normalizing in X by Lemma 1.4.1, which implies that if X, <X,
then X, = X, a contradiction of Lemma 2.7.3. Thus N,Cqs(X) < N by Lemma 2.7.3.
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For L < N, let L* := LCx(X)/Ca(X). Let U < N*. Then U = V/Cg(X) for some
Og(X) S Vv S N and

V=VNN=VnN(NXCq(X))=(VNNX)Cc(X),

so U = (VN N,X)* Thus if U < N*, we may assume that U = V* for some V < N.

I claim that V} is a maximal subgroup of N*. In either case, N} < N* since N,Cq(X) <
N. Now, let N,Ce(X) <Y < N. X, <N, <Y,s0X,<YnNX < X. N, clearly
normalizes Y N X, but X, is a maximal N,-invariant subgroup of X by Lemma 2.7.3, so
either X, =Y N X or Y N X = X. But Y = Y N (XN,Ce(X)) = (Y N X)NaCa(X), s0
Y = XoN,Ce(X) = NoCi(X) or Y = XN,C(X) = N. It follows that N is a maximal
subgroup of N*.

Let H := N*, and let I be the right coset space H\N; (note that |[I'| > 2). Then H is
transitive on I'. Let v := NZ. Then H, = N}, so H, is a maximal subgroup of H. Thus
H acts primitively on I'.

Note that if *; : L — L* is defined by [ — Cg(X)l where L < N, then %, is an onto
homomorphism. Moreover, ker () = Cq(X) N L, so x, is 1-1 if and only if Co(X)NL =
{1}. Now suppose that L < X, and let [ € Ce(X)NL. Write | = (I, ..., [,) where [; € T},
and let t; € T;. Then z := (ty,...,t,) € X, so lx = xl which implies that [;t; = ¢;l; for all
i. Thus [; € Z(T;) = {1} for all i, so C(X) N L ={1}. Hence for all L < X, L ~ L*. In
particular, X ~ X* and T; ~ T for all 7, so T} is simple and nonabelian for all s.

Since Tj -+ T = X*, Ty O (Tf - TF Ty -+ T2 = Ca(X)/Ca(X) and T,Cq(X) is a
normal subgroup of XCq(X) for alli € {1,...,m}, X* =T} x --- x T . I claim that X*
is the socle of H. Of course X* < H, so it suffices to show that Cy(X*) = {Ce(X)} by
Proposition 1.5.6. Let C(X)g € Cy(X*). Then for all z € X, Co(X)gr = Cq(X)xg, so
grgtz7! € Cq(X). But grg~'a~t € X and X N Cg(X) = {1}, s0 gz = xg for all z € X.
Thus g € Ce(X), so Cq(X)g = Cq(X), as desired.

Suppose that X, is a full diagonal subgroup of X. Note that m > 2, or else X is
simple, which implies that X, = X, a contradiction of Lemma 2.7.3. Of course, X} <
Ty x---xTy. Fixie {l,...,m}, let pf : X> — T be the i-th projection map and let
z* € X Nker(p;). We may write 2* = (¢],...,t;) where t; € T} for all j, so tf = C(X).
Then t; € Cq(X) < Cq(Ty), so t; € Z(T;) = {1}. But (¢y,...,t) € X, X, is full diagonal
in X,and t;, =1,s0t; =1forall j € {1,...,m}. Thus 2* = 1, so p}|xz is 1-1 for all i.
Then T7 ~ T, ~ X, ~ X} ~ X pr <T7 for all 7, so X is a full diagonal subgroup of X*.

a

To see that the action of H on I is faithful, the proof is divided into two cases, depending
on whether X is simple or X, is a full diagonal subgroup of X.

Case 1: Suppose that X is simple. Then X* is simple and is the socle of H, so X* is
the unique minimal normal subgroup of H. Let U be a normal subgroup of H contained
in N:. If U is not trivial, then X* < U < N}, but this implies that N} = N X* = N*, a
contradiction. Thus N} is core-free, so the action is faithful.
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Case 2: Suppose that X, is a full diagonal subgroup of X. Then X is a full diagonal
subgroup of X*. Let U < H with U < N} where U is the minimal nontrivial such group.
Then U is a minimal normal subgroup of H, so U < X*, which implies that U < N;NX"* =
XZ. But X7 is simple, U<X} and U is nontrivial, so U = X. Then X} <X*, but X is full
diagonal in X*, hence is self-normalizing in X* by Lemma 1.4.1, so X, ~ X} = X* ~ X.
Then X, = X, a contradiction by Lemma 2.7.3. Thus N} is core-free, so the action of H
on I is faithful.

Summarizing, H is a primitive permutation group on I'" with socle X*. If X is simple,
then the socle of H is simple and nonabelian, so H is of almost simple type. If X, is a full
diagonal subgroup of X, then (X*), = X is a full diagonal subgroup of X* =T} x---x T},
with m > 2, so H is of diagonal type by Proposition 2.7.5.

I claim that G is permutation isomorphic to a subgroup of H wra S, where A =
{1,...,n} and H wra S, acts on I'" with the product action. Write the elements of
H wra S, in the form (hy,..., h,)m where h; € H for all i and # € S,. Note that
T ~ X ~ X, and X, ~ (X;), for all i, so

D" = (X7 X = (X X" = T /|1 Xal" = [M : Mo] = |-

«

I claim that R := {g1,...,9n} is a right transversal for N in G: first suppose that Ng; =
Ng;. Then gig;1 € N, so gjgi’ngigj’l = X. But then

X;=9;'Xg; = g:"9;97 ' Xgig; '9; = Xi,

so i = j. Thus ¢ = j if and only if Ng; = Ng;. Let g € G. Then g = ma for some m € M
and a € G,, 50 ¢ ' Xg=a"'Y(m ' Xm)a=a"'Xa = X for some i. Then

(997 ") ' X(gs97") = gXig7' = X,

so g;g~' € N and Ng; = Ng. Thus R is a right transversal for N in G, so every element
g of G' can be written uniquely in the form n,g where ny, € N and g € R. For all g € G,
define 7, € S, by ¢7'X;9 = Xir,. Define ¢ : G — H wra S, by g — (nf ..., 0k )7,

9197 Vgng
Let g, h € G. Note that m,m, = 7,4, since

Xiﬂgﬂ'h - h_lXiwgh = h_lg_lXigh = (gh’)_le(gh’) =X

Tgh*
Moreover, giggi;i € N for all ¢ since

Gined 95 ' X 9i995m0 = Ginyd XiGGims = Gimy XinyGimy = X.-
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Hence, Ng;g = Ngir,, S0 §ig = i, and g;gh = giz,h for all i. Then

(g)(hp) = (nggs- - - g, )T (g s -5 T )T
(n;gn;mgh, . ,n;ngn;mgh)wgwh
= ((”glgnghrg ), v(ngngngnWQh)*)Wgh
= (1995~ <gmgh>m*>*, e+ (909TnT " (o, 1) G, )V
= (91997 gimy hgngh )", - (90992 Gumy Hgngh ) )
( ;1gh7 R gngh)ﬂ-gh
= (gh)y.

Thus v is a homomorphism.

Let g € ker(y). Then (n} ,,...,n )

g 'X,g = X; for all i. In particular, g € N, so Ng;g = Ng;. Then g;g = ¢;, so g €
g7 'Cq(X)g; for all 4. I claim that g; 'Cq(X)g = Ca(X;) for all i. Let a € Cg(X) and
b e X;. Then

7, is the identity, so (¢:9)7ig~" € Ce(X) and

(9: tag)'blg; tags) = g; a™ (gibg; )y,
=9 (gzbgfl)gi (since 9159;1 € X)
— b,

s0 g; ' Ca(X)g < Cg(X;). Similarly, 9,Co(Xi)g; ' < Ca(X), so g 'Ca(X)g: = Ca(X,).
Then g € (N, Ca(X;) = Ce(M) by Lemma 1.1.3, but C(M) is trivial, so ¢ is 1-1.

To show that G is permutation isomorphic to G, it suffices to show by Proposition
1.2.3 that G acts transitively on I'* and that G,v = (G¢)o where o/ := (v,...,7). Let
m € M. Then Ng;m = Ng;, so gim = g; for all i. Then n; = Cq(X)gimg; ' € M* for
all 7 since M < G. But 7, is the identity and

M* = MCq(X)/Cq(X) < XCq(X)/Ca(X) = X7,

so my € (X*)™. Thus My < (X*)". But |[My| = |M| = |X|" = [(X*)"] since X ~ X*, so
M+ = (X*)™. Hence, G contains the socle of H wra S,, so G acts transitively on I'™.
Now, let a € G,. Then n,,, = (g;a)gia ' € G, NN = N, for all i, so ayp € (N2)" x S, =
H, wra S, = (H wra Sp)o. Thus Gy < (Gip)o. Moreover,

Gl QG ITIGal
|(G¢)o/| ’(G¢)a’| |(G¢)a" ’

50 |Gat0| = |Go| = |(GY)o|. Thus Gotb = (G)) o, as desired.
Note that if H is of almost simple type, then n = k > 2 by assumption, and if H is

D" =[Gy : (GY)o] =

of diagonal type, then n > 2 by assumption, so G is a group of product type as it is a
primitive subgroup of H wra 5, containing the socle of H wra S,,. Thus G is permutation
isomorphic to a group of almost simple product type or diagonal product type. O
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Now we are able to prove the O’Nan-Scott Theorem. Here it is:

Proof of 2.7.1. If T is abelian, then G is permutation isomorphic to a group of affine type
by Proposition 2.7.2. Thus we may assume that 7" is nonabelian. If £ = 1, then G has a
simple nonabelian socle, so G is of almost simple type and we are done. Suppose now that
k > 2. Since T; is nonabelian and simple for all i, G acts on {T},...,T;} by conjugation.
Let p; : M — T; be the i-th projection map, and define R; := M,p;. Note that if a € G,
and a 'T;a = Tj, then

a~'Ria = a (Mapi)a = (™ Maa)p; = Map; = R;

since M, < G,. Thus G, permutes {Ry,..., R}, s0 G, < Ng(Ry x -+ X Rg). But M, <
Ry x---x R < M, so by the primitivity of G, M, = Ry X --- X Ry or M = Ry X --- X Ry.

Suppose that M, = Ry X -+ X R. Then R; =T, N M, = (T;), for all i, so taking X;
to be T; and n to be k, the simple condition is satisfied. Thus if N,Cq(T}) = N, then G
is permutation isomorphic to a group of twisted wreath type by Proposition 2.7.4, and if
N.Cq(T)) < N, then G is permutation isomorphic to a group of almost simple product
type by Proposition 2.7.6.

Suppose now that M = Ry X --- X R,. Then R, = T, for all 7, so M, is a subdirect
subgroup of M. By Lemma 1.4.1, M, = Dy x --- x D,, where for each i € {1,...,n}, D; is
a full diagonal subgroup of X; := [],.; T for some I; C {1,...,k} (where the I; partition
{1,...,k}). If n = 1, then M, is a full diagonal subgroup of M, so G is permutation
isomorphic to a group of diagonal type by Proposition 2.7.5. Thus we may assume that
n > 2. Note that D; = X; N M, = (X;), for all i. Thus the diagonal condition is satisfied,
so (G is permutation isomorphic to a group of diagonal product type by Proposition 2.7.6,
completing the proof. O
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3 Finitely Representing M,

The Gratzer-Schmidt Theorem states that every algebraic lattice is isomorphic to the con-
gruence lattice of some algebra (see [10]). A finite lattice is said to be finitely representable
if it is isomorphic to the congruence lattice of some finite algebra. The question can then
be asked whether every finite lattice is finitely representable. This is an open problem
which is generally believed to have a negative answer.

Pélfy and Pudldk prove in [18] that every finite lattice is finitely representable if and
only if every finite lattice can be embedded as an interval into the subgroup lattice of a
finite group, where if L is a lattice and a,b € L, then the interval of a and bis {c € L :
a < c¢ < b} := [a,b]. Moreover, their proof reveals that if a finite lattice satisfies three
conditions and is finitely representable, then this lattice can be embedded as an interval
into the subgroup lattice of a finite group, and conversely, if a lattice can be embedded as an
interval into the subgroup lattice of a finite group, then this lattice is finitely representable.
This restricts the problem considerably for certain classes of lattices but by no means makes
it trivial, as we shall see.

One lattice which satisfies Palfy and Pudlak’s three conditions is M, the lattice of
length 2 with n atoms (when n > 4). It follows that for n > 4, M, is finitely representable
if and only if there exists a finite group GG containing a subgroup H such that there are
exactly n proper subgroups of GG properly containing H, all of which are maximal subgroups
of G. Much work has been done on this lattice over the last thirty years, and I will take
the remainder of this thesis to describe the progress that has been made, as outlined in
the introduction.

3.1 n—1=7p"

Here is the first most basic reduction for the problem of finitely representing M,,. It comes

from an exercise in [21, p. 10].

Proposition 3.1.1. If n = p* + 1 for some prime p and positive integer k, then M, is
finitely representable.

Proof. Let V be a vector space of dimension 2 over F' := [F,». Any nontrivial element of V/
generates a 1-dimensional subspace of V, and there are p?* — 1 such elements. Moreover,
any 1-dimensional subspace has p* — 1 nontrivial elements, all of which generate the same
subspace, so there are (p** — 1)/(p* — 1) = p* + 1 subspaces of V. Since any proper
nontrivial subspace of V has dimension 1, V has exactly p* + 1 = n proper nontrivial
subspaces; denote these n proper nontrivial subspaces of V' by Vi,...,V,,.

Forv e Vand 0 # a € F, let v : V — V be defined by z — ax +v. Let G :=
{v}:0#aecFveV}, K, ={vi:0#a€ FveV}and H :={0):0+# ac F}.
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It is easily verified that G, H and Kq,..., K, are all groups and that H < K; < G for
all © € {1,...,n}. Moreover, if v} € K; N K; where i # j, then v € V; NV, = {0}, so
K,NK; =H for all i # j.

Let H < K < G. A typical element of K has the form v} for some 0 # b € Fandv € V.
Then v}, = 0fv; € K foralla € F,sov} € K foralla € F. DefineWW :={v eV : v} € K}.
Clearly 0 € W. Let v,w € W. Then z(v+ w); =z + v+ w = (v + v)w] = zviw] for all
zeV,so(v+w); =viwf € K. Thusv+w € W. Let 0 # a € F. Then z(av)] = v +av =
a(alz +0v)+ 0= (a 'z +v)0; = zv*_,0% for all z € V, so (av); = v*_,0; € K. Thus W
is a subspace of V, and clearly K = {v} € G : 0 # a € F,v € W}. But then W must be
a proper nontrivial subspace of V' since H < K < G, so W =V, for some i € {1,...,n}.
Thus K = K, which implies that [H, G] ~ M,,, and we are done. ]

It was thought for some time that if M,, were finitely representable, then n — 1 did have
to be a power of a prime, as the next result suggests.

Proposition 3.1.2. Let G be a finite group whose subgroup lattice is isomorphic to M,
where n > 3. Thenn — 1 is a prime.

Proof. Let H be a proper nontrivial subgroup of G. Then H has only trivial subgroups.
If p||H| and ¢ | |H| where p and ¢ are primes, then H contains subgroups of order p and
q, a contradiction. Thus H is a py-group for some prime py. If H has order pj; for some
m > 2, then H has a subgroup of order py, a contradiction. Thus every proper nontrivial
subgroup of G is a cyclic group of prime order.

To start, suppose that G is a p-group for some prime p. Clearly |G| # p. Suppose that
|G| = p™ for some m > 3. Then G has a subgroup of order p, say H. By Proposition 1.8.1,
G is nilpotent, so H < Ng(H), which implies that H << G. Then G/H has order p™~!, so
it contains a subgroup K/H of order p. Since |G/H]| is at least p?, H/H < K/H < G/H,
so H < K < G, a contradiction. Thus |G| = p?, so G is abelian by Proposition 1.3.2.
Then G ~ Z,» or G ~ Z, X Z,. Z, is cyclic, so it contains exactly one subgroup of order
p, but n > 3, so G is not isomorphic to Z,:. Thus G ~ Z, x Z,. Since G is not cyclic,
every nontrivial element of G generates a proper nontrivial subgroup of order p. Since
each pair of nontrivial proper subgroups intersects trivially and every nontrivial element
is contained in some proper subgroup of GG, the number of nontrivial elements of G must
equal the number of proper nontrivial subgroups times the number of nontrivial elements
in each subgroup. Then p? — 1 =n(p — 1), so n = p+ 1. Thus n — 1 is a prime, and we
are done.

Hence, we may assume that G is not a p-group for any prime p. Note that since
every proper nontrivial subgroup of G has prime order and is maximal in G, every proper
nontrivial subgroup of G must be a Sylow subgroup of G. It follows that G is square-free.
Suppose that G has a Sylow p-subgroup P which is normal in G. Let ¢ # p be a prime
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dividing the order of G, and let ) be a Sylow ¢g-subgroup where p # ¢q. Then P < PQ < G,
so PQ = G. Since PN Q = {1}, |G| = pg. Then n, | p and n, | ¢. If n, = g and n, = p,
then g | (p—1)and p| (¢ — 1), s0o ¢ < p and p < ¢, a contradiction. Moreover, if n, =1
and n, = 1, then n = n, + n, = 2, a contradiction. Thusn =n, +ny;=1+qgor 1 +p. In
either case, n — 1 is a prime, and we are done.

Suppose now for a contradiction that no Sylow p-subgroup of G is normal in G. Let
p < q be primes dividing the order of G. Let P be a Sylow p-subgroup of G. Then
Ng(P) < G, but P < Ng(P), so we must have that P = Ng(P). Since P is a proper
nontrivial subgroup of G, P is cyclic of order p, so P = (a) for some a € G. Let m := |G :
P]. Choose g1, .., gm to be right coset representatives of P in G. Let

Spo={gi'ag: 1<i<mand1<j<p-1}

Suppose that g~'a'g = h™'a’h for some g,h € G and i,j € {1,...,p — 1}. Then o' =
gh™ta’hg™t. Since ged(i,p) = 1 and a has order p, there exists an integer | for which
a = a®. Then a = gh~'a’'hg™', so P = {(a) < gh 'Phg~!. Thus P = gh~'Phg~!, so
hg™' € Ng(P) = P, and Pg = Ph. It follows that |S,| = (p — 1)[G : P]. This argument
can be repeated for a Sylow g-subgroup @ of G, so |Sg| = (¢ — 1)[G : Q] as well. Clearly
SoNSp =10, so G contains at least |Sp|+ |Sg|+ 1 elements. Now p > 2, sop/(p—1) < 2.
Since ¢ > p>2,q>p/(p—1),s0 pg—p—q > 1. Then |G|pq — |G|p — |Glq > |G| > —pq,
so dividing by pg we get that |G| —| G|/q — |G|/p > —1. Thus

1Sp|+1Sel +1 =2|G| = G|/p = |Gl/q¢ + 1 > |G],

a contradiction. O

3.2 Nonsolvable Case

The next proposition gives more information about the case when n — 1 is not a power of
a prime.

Theorem 3.2.1 (Pélfy and Pudlék, [18]). Let G be a finite group. Suppose that H is a
proper subgroup of G containing no nontrivial normal subgroup of G such that the interval
[H,G] in the subgroup lattice of G is isomorphic to M, for some n > 3. If G has a
nontrivial normal abelian subgroup, then n — 1 is a prime power.

Proof. Let {K;, Ko, ..., K,} be the n atoms of [G, H]. Let A be a minimal abelian normal
subgroup of G. By assumption, A £ H, so H < AH < G. Suppose that AH = G, for a
contradiction. Since A is abelian, A N K; is abelian and AN K; < A, but AN K; < K;
since A <G, s0 ANK; <AK, = G since G = AH < AK,. Moreover, if AN K; is trivial,
then H = (K1 NA)H = K; N (AH) = K;, a contradiction, so by the minimality of A,
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ANK; = A. But then G = AH = (AN K;)H < K, a contradiction. Thus H < AH < G,
so we may assume without loss of generality that AH = Kj. For j € {2,...,n}, we have
that K < KlKj = (AH)K] = AK] < G, SO KlKj = AK] = G. Then

[A:ANK;| =[G K;|=[K,: KiNK;|=[AH : H|=[A: AnH]|,

so ANK; = ANH. ANK; <A and ANK;<K;,s0 ANK;<AK; = G. If ANK; = A, then
H=HN(AK;) = (HNA)K; = (ANK;)K; = AK; = G, a contradiction, so AN K; = {1}
by the minimality of A. Thus G = A x K for all j € {2,...,n}.

Let x € Ky, and fix j € {2,...,n}. x € Ax K}, so there exist unique elements k, € K;
and a, € A with © = kya,. Then 7'k, € A. Define ¢; : Ky — A by  — z7'k,. Then
p; is well-defined and K; = {z(zp;) : € Ky} since z(zyp;) = xa 'k, = k, € K; and if
k € Kj, then k = xa for some z € Ky and a € A, so k = k, = zo7 'k, = z(vyp;). Let
x,y € K. Then

kyyQey = 2y = kyazkya, = (kxky)(kglaxky)ay

and (k 'azky)a, € A, so kyy = kyky,. Then

(2y)pj = (2y) Yk = v o ek, = v (20 yy Tk, =y (205 y(ye;)

for all z,y € Ky. Also, if h € H, then h € K}, so a, = 1 and h = k. Thus hp; =1 for all
h € H. Clearly ¢, ..., ¢, are all different since Kj, ..., K, are all different.

Now, suppose that we have a function ¢ : Ky — A satisfying hp = 1 for all h € H and
(zy)p =y Hzp)y(yp) for all z,y € Ky, which I will refer to as (x). Let B := {z(xp) : x €
Ky}, Clearly 1 € B. If z(zp), y(yp) € B, then by (%), z(z¢)y(yp) = zy(zy)e € B. Taking
y =z ! in (*), we see that 1 = 1o = z(xp)z (27 ), so (z(zp))™t = 27z p) € B.
Thus B < G. Of course AB < G. Let za € A x Ky (where z € K, and a € A). Then
zra = z(zp)(zp)~ta € BA, so G = K3A < BA. Thus AB = G. Suppose that B = G.
Then A < B, so if a € A, then a = z(xp) for some © € Ky, so z € AN Ky = {1},
which implies that a = 1, a contradiction. Thus B < G. Moreover, H < B since if
h € H, then h = hl = h(hy) € B. If B = H, then given z € K, z(xyp) € B = H, so
xp € AN Ky = {1}, so x € H, a contradiction. Thus H < B. Since H < B< G, B=K;
for some i. Let x € AN B. Then x = a = y(yp) for some a € A and y € K,, which
implies that a(yp)™ =y € KyN A = {1}, s0o x = 1. Thus AN B = {1}. Note that if
ANK,; ={1}, then H = (K;NA)H = K;N(AH) = K, a contradiction, so AN K is not
trivial. Then B # K7, so B = K for some j € {2,...,n}. Let x € K5. Then z(zy;) € K;,
so z(zp;) = y(yp) for some y € Ky. But y 'z = (yp)(zp;) t € KhNA={1},s0x =y
and z¢; = xp. Thus ¢ = ¢,, so there are exactly n — 1 functions ¢ : Ky — A satisfying
hp =1 for all h € H and (xy)p =y~ (zp)y(yyp) for all x,y € Ky, namely, ¢s, ..., @,.
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Let K :=={p; : 2 <j <n}. Ifo¢ekK,letzpy = (xp)(z) for all v € Ky. Let
x,y € Ky. Then

vy(zy)e = (zy(zyp))(zy)

(ze)y(ye)(zyd) (by (x))

() (y(zyw)) (yep) (since A is abelian)
() ((z)y(y¥))(ye) (by (%))
= z(
(

Il
=

I
=

&&

zp) (w)y (yvp)
= z(xe)y(yew) (since A is abelian)

and if h € H, then hpy = hphy = 1. Thus py» € K, so we have a binary operation on
K. Clearly xpy = 1 for all x € K5. It follows that 5 is the identity of K. Note that A
is abelian, hence solvable, but it is minimal normal in G, so by Proposition 1.7.2, A is an
elementary abelian p-group for some prime p. Thus every element of A has order p. Then
rpP = (zp)P = 1 for all z € Ky and ¢ € K, so0 if ¢ # 9, then ¢! = pP~! € K. Thus
K is an abelian group (since A is abelian). Moreover, every nontrivial element of K has
order p, so K is an elementary abelian p-group. But |K| =n —1, so n — 1 is a power of a
prime, as desired. O

Let G be a finite group, and suppose that the interval [H, G| in the subgroup lattice of
G is isomorphic to M,, where n — 1 is not a power of a prime. Let N be the core of H in G.
Then the interval [H/N,G/N] in the subgroup lattice of G/N is also isomorphic to M,,.
Moreover, H/N contains no nontrivial normal subgroup of G/N, so by Theorem 3.2.1,
G/N contains no nontrivial abelian subgroup, which implies that G/N is not solvable.
Thus G is not solvable. It follows that for n — 1 not a power of a prime, M, is finitely
representable if and only if M,, can be embedded as an interval into the subgroup lattice

of a finite nonsolvable group.

3.3 Subdirectly Irreducible Case

A nontrivial group G is subdirectly irreducible if and only if G' has a unique minimal
normal subgroup (see [5, p. 63] for the definition of a subdirectly irreducible algebra). The
smallest n for which n — 1 is not a power of a prime is of course 7. Kohler proved in [13]
that a finite group minimal with respect to the property of its subgroup lattice containing
an interval isomorphic to M; must be subdirectly irreducible, hoping that this would lead
to a proof that M; is not finitely representable. Meanwhile, Feit showed in [9] that M; is
actually finitely representable by embedding M; as an interval into the subgroup lattice
of the alternating group on 31 letters (a nonsolvable group, of course). Thus the set of
integers n for which n — 1 is a power of a prime does not completely determine when M,, is
finitely representable. Fortunately, Kohler’s theorem generalizes quite easily, as he points
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out in [13]. Here is the general version of Kohler’s result; it differs only slightly from his
proof of the case n = 7. We start with a lemma.

Lemma 3.3.1 (Kohler, [13]). Let Ny and Ny be distinct minimal normal subgroups of a
group G. Let H < G. Then the set of subgroups U of N1Ny satisfying

(i)) UNN, =UNN, = {1},
(ZZ) UN1 = UN2 = NlNQ, and
(iii) H < Ng(U)

is in 1-1 correspondence with the set of isomorphisms o : Ny — Ny satisfying (h='zh)p =
h=Y(zp)h for allh € H and x € Ny.

Proof. Note that N; and N, centralize each other by Proposition 1.5.1. Let U < N{N,
for which (i), (ii) and (iii) hold. Define ¢y : Ny — Ny by ny — ny where niny € U. If
x =y € Ny, then z(xpy) € U and y(you) € U, so (ypu) 'y z(zor) = (ypu) Hrpw) €
UN Ny ={1}. Thus ypuy = xpy, so gy is well-defined. Let z,y € Ny. z(xzoy), y(ypur)
and zy(xypy) € U, so

(yeu) 'y Hwer) e ey (zyer)
= (ypuv) 'y Hweu) y(ryeu)
= (ypv) H(zouv)y y(zyeu)
= (yeu) Hzou) H(zyeu)

M
3
>
5

= {1}

Thus (zy)pr = (xev)(yeu), so ¢y is a homomorphism. Suppose that x € ker(¢y). Then
zoy = 1, 50 x(zpy) = v € UNN; = {1}. Thus ¢ = 1, so ¢y is 1-1. Let ny € Na.
Then ny € NNy = UNy, 80 ng = nl_lu for some ny € Ny and v € U. Rearranging, we
get that nyny = u € U, so nipy = no, which implies that ¢y is onto. Thus ¢y is an
isomorphism. Further, (h~'zh)oy = h™'(x@y)h for all h € H and x € Ny: z(voy) € U,
so h™tz(zpy)h € U by (iii), but (b~ zh)(h *zhey) € U, so

(R *z(zop)h) (W ah) (R whey) = h~Haey) th(h zhey) € UN Ny = {1},

giving the desired result.

On the other hand, let ¢ : N; — Ny be an isomorphism that satisfies (h~'zh)p =
h™(xp)h for all h € H and x € Ny. I claim that U, := {z(z¢) : © € N1} is a subgroup
of NiNj satisfying (i), (ii) and (iii). Clearly 1 € U,. Let z(z¢),y(yp) € U,. Then
because N; and N, centralize each other and because ¢ is a homomorphism, x(z¢)y(yp) =
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zy(zo)(yp) = xy(zyp) € U,y Moreover, (z(xp))™ = (zp)ta™! = a7 (z7 ) € U, so

U, < NiNy. Now, let y = z(zp) € NyNU,. Then 7'y =axp € NN Ny = {1}, s0oz =1
since ¢ is 1-1, which implies that y = 1. Thus Ny N U, = {1}. Let y = z(zp) € N, N U.,.
Then y(zp)™ =2 € NaN Ny = {1}, so z = 1. Thus Ny N U, = {1} as well, so (i)
is satisfied. Let ning € NiNy. ny = xp for some z € Ny, so xny = z(xp) € U, but
ning = (') (zng) € N1U,, so NyNy < NqU, < NiNy. Thus N;U, = N;N,. Further,
NyU, = N1 Ny since if ning € NiNo, then niny = (ni(n19))((n1p) 'ne) € U,Na, so (ii)
is true. Let h € H and x(xp) € U,. Then h™'z(zp)h = h~'ah(h tzhy) € U, since
h='zh € Ny, satisfying (iii).

Lastly, I show that oy, = ¢ and U,, = U, which gives us the desired 1-1 corre-
spondence. Let v € Ny. x(xpy,) € U, so z(vpy,) = y(yyp) for some y € Ni. Then
y 'z = (yo)(wpu,)t € Ny N Ny = {1}, so y = &, which implies that zpy, = z¢. Thus
ou, = . Now, let z(xpy) € Uy,,. Then z(x¢y) € U, so U,, < U. On the other hand,
let w € U. Then u = nyny for some ny; € Ny and ny € Ny. Since niny € U, nipy = na, SO
u=mn(nipy) € Uy,. Thus U, =U. O

Theorem 3.3.2 (Kohler, [13]). Let G be a finite group. Suppose that the subgroup lattice
of G contains an interval that is isomorphic to M,, (n > 3) where G is minimal with respect
to this property. If n — 1 is not a power of a prime, then G is subdirectly irreducible.

Proof. Write the interval as [H, K| where H, K < G. Then by the minimality of G, K = G.
Let Ki,..., K, denote the n atoms. Let N be a normal subgroup of G contained in H.
Then the interval [H/N : G/N] is isomorphic to M,, and |G/N| < |G|, so by the minimality
of G, N = {1}. Thus H contains no nontrivial normal subgroup of G. Note that n > 7
since n — 1 is not a power of a prime.

Suppose for a contradiction that G is not subdirectly irreducible. Then G does not
have a unique minimal normal subgroup. Let N; and N; be distinct minimal normal
subgroups of G. First I show that we may assume that for all i € {1,2} and j € {3,...,n},
G =N, xK;, HN; = K; and H N N;N; = {1}

If N; < K; and N; < K; for some j # [, then V; < K; N K; = H, a contradiction as
H contains no nontrivial normal subgroup of G. Thus both N; and Ny can be contained
in at most one of the groups Ki,...,K,. So we may assume without loss of generality
that for ¢ € {1,2}, N; £ Kj for all j € {3,...,n}. Then N;K; = G for all i € {1,2} and
j€{3,...,n}since K; < N;K;. Fix j € {3,...,n}. K; NNy < K,. Moreover, K; N Ny is
normalized by Ny since N; and Ny centralize each other. Thus K; N Ny < K;N, = G. By
our choice of j, K; N Ny < Ny, so by the minimality of Ny, K; N N; = {1}. By symmetry,
K;N Ny ={1}. Thus G=N; x Kj for all i € {1,2} and j € {3,...,n}.

Of course H < HN; < G for i € {1,2}. Suppose that HN; = G for some i. Then
K;=K;,NG=K;N(N;H) = (K;NN;)H = H, a contradiction. Thus HN; = K; for some
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j € {1,2} since N; « K; when j € {3,...,n}, so we may assume without loss of generality
that HN; = K;. Suppose for a contradiction that H N, = K;. Then N; N, < Ky, which
implies that

K;N NN, = K; N K, N NNy = H O N, N,

for all j € {2,...,n}. N1N, <G, so K; N NN, < K. It follows that H N Ny Ny <
(Ko, K3) = G, but HN NiNy < H, so we must have that H N NNy = {1}. But then
Ny = (M No N K3)Ny = (N No) N (K3N;) = NyNa (G = Ny Na, so Ny < Ny, which cannot
happen. Thus HN; = K; and HN, = K.

Note that H N Ny < K3N Ny = {1}. Moreover, since HNy = K3 and N; < K7,

HNy NN, =KoNNy=K,NK NN, =HNN, < Ksn N, = {1}.

Then
|HN1Ny| = [HNy||Ni| = [H||No||Ny| = |H|| Ny No|

since Ny N Ny = {1}, so H N N; Ny = {1}, as desired.

Let U; :== K; N N1 N, for all j € {3,...,n}. Then U; is a subgroup of N; N, satisfying
(i), (ii) and (iii) of Lemma 3.3.1 for all j: fix j € {3,...,n} and ¢ € {1,2}. Then
U;NN; = K; 0 (N\No N N;) = K; O N; = {1}; U;N; = (K; 0 Ny No)N; = Ny N 0 (K N;) =
N1N2 NG = Ny Ny; and since N1No, <G and H < K;, H < Ng(Uj;).

Moreover, if U is any subgroup of Ny N, satisfying (i), (ii) and (iii) of Lemma 3.3.1,
then I claim that U = U; for some j € {3,...,n}. Note that NyNo N (HU) = (NyNy N
H)U = {1}U = U. It then suffices to show that HU = U, for some j € {3,...,n}, for
U= HUNN Ny, =U; N NiNy = U;. Note that H < HU < G since H normalizes U
by (iii). If H = HU, then U < H N N;Ny = {1}, so Ny = UN; = UN, = N, by (ii), a
contradiction. If HU = G, then Ny Ny = U, which implies that Ny < U, but UN Ny = {1}
by (i), a contradiction. Lastly, if HU = K; for some i € {1,2}, then since HN; = K,
N; < K;NNyN, = HUNN; N, = U, contradicting U N N; = {1}. Thus HU = U; for some
je{3,...,n}

We conclude that there are exactly n — 2 subgroups of Ny N, satisfying (i), (ii) and

(iii) of Lemma 3.3.1, namely, Us,...,U,. But then there are exactly n — 2 isomorphisms
¢ : N — Ny satisfying (h~'zh)p = h=(zp)h for all h € H and x € N; by Lemma 3.3.1.
Moreover, as defined in the proof of Lemma 3.3.1, these isomorphisms are @y, ..., ¢y, -

Let Y :={ou,, .- ., ¢u, } and
Z :={a € Aut(Ny) : (h"*zh)a = b (za)h for all h € H,z € N,}.

Then Z < Aut(Ny) since if «, 3 € Z, then (b= (x5~ 1)h)B = h~'zh, so (b~ 'zh)af™! =
(WY za)h)B™' = h(zaB A, T claim that Y = {ap : a € Z} for any ¢ € V. Let
@ €Y be fixed, and let a € Z. Then a is an isomorphism from N; onto N, satisfying
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(htzh)ap = h~ Y (zap)h, so ap € Y. Let v € Y. Then o' € Aut(N;) satisfying
(htxh)po™t = h= Yz t)h, so ™! € Z, proving the claim. Z is not trivial since | Z| =
|Y| =n—22>5,s0 Z contains an element of prime order, say o, and a = ¢y, 90531 for some
j # 3since Y = {apy, : a € Z}. Let x € Ny be a fixed point of a. Then x = $<pUj90(}31, SO
vy, = vpy,. Then z(zpy,) = 2(rpy;) € UsNU; = KsN K; NN Ny = HN NNy = {1},
so zpy, = 71 € Ny Ny = {1}. Thus = = 1, so « is a fixed-point-free automorphism of
prime order. Then by Thompson’s Theorem (1.9.4), N; is nilpotent, hence solvable. But
Nj is a minimal normal subgroup of G, so N; is abelian by Proposition 1.7.2. Then by
Theorem 3.2.1, n — 1 is a power of a prime, a contradiction. O

Thus for n — 1 not a power of a prime, M, is finitely representable if and only if M,
can be embedded as an interval into the subgroup lattice of a finite nonsolvable group with

a unique minimal normal subgroup.

3.4 Using the Proof of the O’Nan-Scott Theorem

Suppose that n — 1 is not a power of a prime, and suppose that M, is embedded as the
interval [H,G] into the subgroup lattice of a finite group G, where G is taken to be the
smallest such group. By Theorem 3.3.2, G has a unique minimal normal subgroup, say M,
and M is nonabelian by Theorem 3.2.1 since the minimality of G implies that H contains
no nontrivial normal subgroup of G. Then M ~ T* for some finite simple nonabelian
group T" and some positive integer k by Corollary 1.5.5 and is of course the socle of G.
Thus the socle of G has the same structure as the socle of a finite primitive permutation
group, which suggests, as previously discussed, that some of the methods used in the proof
of the O’Nan-Scott Theorem might be applicable to this problem; indeed, Lemma 1.4.3
and part of the proof of Lemma 2.7.3 turn out to be fundamental in the next reduction of
the problem of finitely representing M,,.
In addition to the assumptions already made, suppose that G is not almost simple,
M N H # {1} and n > 50. Lucchini then proves in [16] that we must have
¢ +1
q+1

n=q+2orn= +1

where ¢ is a prime power and ¢ is an odd prime, which is good since he also proves in [15]
that for such n, M, is finitely representable. Note that the case n = 7 is included. Let us
examine Lucchini’s reduction in more detail.

First, make note of the following: since M is the socle of G and T is nonabelian,
Ce(M) = {1} by Proposition 1.5.6. Let g € G, and define ¢, € Aut(M) to be conjugation
by g. Define ¢ : G — Aut(M) by g — ¢,. ¢ is clearly a homomorphism, and if g € ker(y),
then g~'mg = m for all m € M, so g € Co(M) = {1}, which implies that ¢ is 1-1. Thus
G is embedded in Aut(M) = Aut(T*) ~ (Aut(T))* x Sy by Proposition 1.6.1.
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Lucchini’s reduction has three steps. First, he proves that there exists a proper non-
trivial subgroup R of T' that is self-normalizing in 7" such that M NH = {(¢,...,t) : t € R}
and that in this case, there are exactly n — 1 H-invariant full diagonal subgroups of M
containing M N H. Second, R < T =~ Inn(T), so R can be embedded into Aut(T).
Then R < Npwry(R) and R < Inn(T), so R I Nayr)(R) N Inn(T) < Inn(T), but R is
self-normalizing in Inn(T"), so R = Nawr)(R) N Inn(T). Then

NAut(T)(R)/R = NAut(T) (R)]nn(T)/Inn(T) S Out(T),

so if Out(T) is abelian, then Nuur)(R)/R is abelian. He uses the fact that any full
diagonal subgroup of M has the form

{(ty1,ty2y ..., ty) s t € T, for some ; € Aut(T)}

(see (1) in the proof of Lemma 1.4.1(i)) and that G < (Aut(T))* x S, to show that if
Naw(ry(R)/R is abelian, then [H,G] ~ Mg, where ¢ is a prime power, a contradiction.
Lucchini thus assumes that Out(T') is not abelian so that 7' must be of Lie type. He finishes
the second step in his reduction by proving that if 7" is not PSL,(q) or PSU,(q), then we
again have that n — 1 is a power of a prime (this is where the assumption that n > 50
is required). Lastly, if 7" is PSL,(q) or PSU,(q), Lucchini proves that n falls into one of
the two categories stated above. I will examine the details of the first step of Lucchini’s
reduction as it is this step that shares many similarities with the proof of the O’Nan-Scott
Theorem.

Theorem 3.4.1 (Lucchini, [16]). Let G be a finite group, and suppose that G contains a
subgroup H such that the interval [H, G] is isomorphic to M, (n > 3) where G is minimal
with respect to this property. Let M be the socle of G. If n — 1 is not a power of a
prime, G is not almost simple and M N H # {1}, then M N H = {(t,...,t) : t € R} for
some 1 < R < T such that R is self-normalizing in T'. Moreover, there are exactly n — 1

H-invariant full diagonal subgroups of M containing M N H.

Before I begin the proof, note the following. Let Q be the right coset space G\ H, and
let « := H, so that G, = H and M, = M N H. This is a transitive faithful action as
H containing no nontrivial normal subgroups of G implies that H is core-free in G. Of
course, it is not a primitive action since G, is not a maximal subgroup of GG, but this is of
no consequence, as we shall see. Keep this construction in mind throughout the following
proof.

Proof of 3.4.1. We have seen already that G is not solvable and that M is the nonabelian
unique minimal normal subgroup of G. Then M ~ T* for some simple nonabelian group
T and some integer k£ > 2 (as G is not almost simple), so we may write M =T} x -+ x T}
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where T; ~ T for all i. Let K7,..., K, be the n atoms of [H,G]. As we saw in the proof
of Theorem 3.3.2, H contains no nontrivial normal subgroup of G since G is minimal.
Thus H < HM. If HM < G, then HM = K; for some i, so choosing j # i we get
that M NH =MnN(K;NK;)=MnNK; <K;. It follows that if j # ¢ and | # 4, then
MNH<(K;, K;) =G, but MNH < H,so MNH = {1}, a contradiction. Thus HM = G.

When dealing with primitive permutation groups GG, we often focus on the G,-invariant
subgroups of the socle containing the stabilizer of the socle instead of the entire group G.
We can do the same thing here because it turns out that the interval [H, G] is isomorphic
to the lattice of all H-invariant subgroups of M containing H N M, which is denoted by
[HN M, M]g. To see this, let H < K < G. Then K N M is an H-invariant subgroup of M
containing H N M. Let L be another subgroup of G containing H. Clearly, if K < L, then
KNnM < LnM. Conversely, if KNM < LNM,then K =KNMH=(KNM)H <
(LNM)H = L. Moreover, if KNM = LN M, then K = L. Now, let K be an H-invariant
subgroup of M containing H N M. Then H < HK < Gand HKNM =K(HNM) =K.
Hence, [H N M, M|y ~ [H,G]| ~ M,,.

Since G = HM and M is a minimal normal subgroup of G, H acts transitively by
conjugation on {71, ..., Ty}, so there exist 1 = hy, hy ..., hy € H such that T; = h; 'Tyh;
for all . As usual, let p; : M — T; denote the i-th projection map.

Let K be an H-invariant subgroup of M. If h € H and h™'T;h = Tj, then as we saw
in the proof of the O’Nan-Scott Theorem, h™'(Kp;)h = (h"*Kh)p; = Kp;; in particular,
hi'(Kpi)h = Kp;. It follows from this and from the transitivity of the action of H on
{T},...,T}} that if Kp; =T} for some j € {1,...,k}, then Kp, =T, for alli € {1,... k}.
Hence in this case, K is a subdirect subgroup of M and we know the structure of K by
Lemma 1.4.1. On the other hand, suppose that Kp; < T; for all i. Since H is transitive
on {T1,...,Tx} and h™'T;h = T implies that h™'Kp;h = Kp; (where h € H), the proof
of Lemma 2.7.3 with X; taken to be T; and X, taken to be Kp; carries through; that is,
Kpy is normalized by Ny (T}), and if Kp; < S < Ty where S is Ng(T})-invariant, then
Shix ... x SM is an H-invariant subgroup of M containing K (since K < Kpy X -+ x Kpy,).
Moreover, suppose that H N M < K, and let S be a proper Ny(T})-invariant subgroup of
T, containing Kp;. Then since [H N M, M|z ~ M, and K < (Kp;)™ x -+ x (Kpy)™* <
Shix.oox St < M, K = S™M x ... x 8" and S = Kp,. Thus any maximal H-invariant
subgroup of M is either a subdirect subgroup of M or has the form S" x - - . x S where S
is a maximal Ny (T})-invariant subgroup of 77 (namely, the projection of the H-invariant

maximal subgroup on 77).

Now, we consider the structure of HNM. Suppose for a contradiction of the minimality
of G that HNM is a subdirect subgroup of M. Then HNM = Dy x---x D,, for somem > 1
where D; is a full diagonal subgroup of some subproduct X; := [],.; T such that {1,..., k}
is partitioned by the I;. Without loss of generality, we may assume that xzp, = zp, for all
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x € D;,rys€l;andi € {1,...,m}. Note that D; = (HNM)NX; = HNX; for all i. Then
by Lemma 1.4.3 with A taken to be H, H permutes {X,...,X,,} by conjugation, and
this action is transitive since H acts transitively on {71, ...,T}. We may of course define
an action of H on {1,...,k} by i" := j if h™'T;h = T}. Tt follows that H acts transitively
on {Ily,...,I,}. In particular, D := {[y,..., I, } forms a system of blocks on {1,...,k}
(by which T mean a partition of {1,...,k} made up of blocks under the action of H on
{1,...,k}), and if I is the block containing 1, then D = {I": h € H}.

Let J be ablock on {1, ..., k} containing 1 that is contained in I, and note the following
two facts. If 0 # J' C J, then Hy < Hy: let h € Hy. Then J* = J C J, but J* C J",
so JNJ" # ). Thus J* = J and h € H, as desired. Second, J = {1":he€ H;}: 1 € J, so
if h € Hy, then J" = J, which implies that 1" € J. Conversely, if j € J, then there exists
an h € H with j = 1" € J* so j € JN J", which implies that J = J"; that is, h € H;.

Let K be an H-invariant subgroup of M containing HNM. Then T; = (HNM)p; < Kp;,
so K is also a subdirect subgroup of M, which implies that K = E; x --- x E; for some
[ > 1 where Ej is a full diagonal subgroup of some subproduct [, ; Tj such that {1,...,k}

is partitioned by the J;. Let m; : K — E; be the projection map, and let 7, ; 1= 7;|p,.
Now, ker(m; ;) = D; or {1} since D; is simple. Clearly if ker(m; ;) = D;, then I; N J; = 0.
Suppose then that ker(m ;) = {1}; since D; ~ T ~ E;, m;; must be an isomorphism.
Then if (t1,...,t,) € Ej, there exists a (¢,...,t) € D; with (¢,...,t)m; = (t1,...,t,), so
t; = t for all 4 and J; C I;. Hence, either I; N J; = 0 or J; C I, Note as well that
xzp, = xp, for all x € Ej, r,s € J; and j € {1,...,1}, which I will refer to as (x). Let
Y, = HjEJi Tjand € := {Jy,...,Ji}. Since E; = Y;N K and K is an H-invariant subgroup
of M containing HNM, H acts by conjugation on {Fy, ..., E;} and {Y,...,Y;} by Lemma
1.4.3 with A taken to be H. Thus £ is a system of blocks which refines D. Let J be the
block in € containing 1. Then & = {J" :h € H} and JNI # 0, so J C I. Tt follows that
Hy < H; < Hj.

Let K’ be another H-invariant subgroup of M containing H N M, and let £ be the
system of blocks associated with K, so that & = {J" : h € H} where J' is the block in &’
containing 1. Suppose first that K < K’. Then, by the same argument which proved that
& refines D, we have that &' refines &£; in particular, J' C J, so Hy < Hj;. Conversely,
suppose that Hy < H;. Then J' = {1":he€ Hy} <{ 1" : h € H;} = J, so & refines &,
which implies that K < K’ by (x). Moreover, if H; = Hj, then K = K’. Thus we have
defined a 1-1 order-reversing map from the set of H-invariant subgroups of M containing
H N M to the set of subgroups of H; containing H;; now I prove that this map is onto.

Let L be a subgroup of H; containing H;. Then I claim that L = H; where J :=
{1" : h e L}. If j € J and h € L, then clearly j* € J, so J» C J. Note that if i" = j"
where 4,7 € J, then h™'T;h = h™'T;h, which implies that i = j. Since we then get that
|J| <] J"|, J* = J. Hence, L < Hj;. On the other hand, let h € H;. Then J" = J, so
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1" € J. This implies that 1" = 1" for some h’ € L, but then 1" =1, so Wh~' € H, < L.
Hence, h € L and L = H;. Moreover, suppose that h € H and J* N J # (). Then there
exist i/, b € L such that 1"'" = 1" or 1"""~" = 1, which implies that W'hh"~* € H, < L,
hence that h € L and J" = J. Thus J is a block, which implies that J” is a block for
every h € H. Tt follows from the transitivity of H on {1,...,k} that £:={J":h € H} is
a system of blocks on {1,...,k}. Since J C I and D = {I" : h € H}, £ refines D. Write
Eas {Ji,..., i} where {1,...,k} is a disjoint union of the J;. Let Y; := [],.,; T; and

E;:={x e M :xzp, =xps forall r,s € J; and zp, = 1 if r ¢ J;}.

Then F; is a full diagonal subgroup of Y; for all . Let K := FE; x --- x E;. Then
HNM < K < M since € refines D, and K is H-invariant since H permutes {.Jy,...,J;}.
Hence, the lattice [H N M, M|y is isomorphic to the dual of the lattice [Hy, H;], but M, is

self dual, so [Hy, H;] itself is isomorphic to M,,. This is a contradiction of the minimality
of G since H; < H < G.

We may assume, therefore, that R; := (HNM )p; < T; for alli. Note that {1} < Ry < T}
(as HN M is nontrivial). Suppose now that every proper H-invariant subgroup of M is not
a subdirect subgroup of M, again for a contradiction of the minimality of G. Let L; and
Ly be two maximal H-invariant subgroups of M. Then for i € {1,2}, L; = S™ x ... x S*
where S; = L;p; is a maximal Ny (T7)-invariant subgroup of T) (see earlier in the proof).
Then R; < .51 NSy, which gives us the following:

RM oo x R < (S1N8y)M x -+ x (81 N Sy)M
=LiNLy
=HnNM
< RM x ... x RI*,

Thus H N M = R x --- x RI*.

Now, let K be an H invariant subgroup of M containing H N M. Then K = S™ x
- x Sh where Ry < S < Ty and S is Ny(T))-invariant. On the other hand, let S be
an Ny (T7)-invariant subgroup of 7) containing R;. Then K := SMhox .o x Sh is an
H-invariant subgroup of M containing H N M as we saw near the beginning of this proof
(with K taken to be H N M). It is then routine to verify that the lattice [H N M, M|y
must be isomorphic to the lattice [Ry, T1]ny, (1)

Much like in the proof of the O’'Nan-Scott Theorem, define G* := Ng(T1)/Cs(17) and
H* := Ng(T1)Cq(T1)/Cs(T1). Note the following:

Ng(Ty) = Ne(Th) N HM = Nyg(Thy)M < Ny(T1)T1Cq(Ty) < Ng(Ty),
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so Ng(T1) = Ng(T1)T1Cq(T1). Moreover, we have the following:

Ny(Ty)Co(Ty) N'Ty
= [(Ne(T1) N H)Co(Th)] N'Th
= Ng(Ty)NHCq(Ty)NT}
= HCu(T)NT,
= Ry XX RCo(Th)N'Ty
= RiCe(Th)NT (Ry X -+ X Ry < Cq(Th))
= Ri(Cq(Ty)NTY)
= Ri{l}
= R;.

Let U/Cq(T1) be a subgroup of G* containing H*. Then
Ry =Ny(Th)Ce(Th)NTy <UNTy <1,

and U N1y is Ny (Ty)-invariant since Ny(7T7) < U and Ny (1) < Ng(T1). Let V/Cq(Th)
be another subgroup of G* containing H*. If U/Cq(Ty) < V/Cq(T}), then of course
UNT, <V NTi. Conversely, suppose that U N1y <V NT;. Then

U =UnNs(T)
= U N (T,Ca(T) Ny (Th))
= (UNT)Ca(T1)Nu(Th)
< (VNT)Ce(T)Nu(Th)
~V.

Moreover, if U NTy = V N1y, then U = V. Now, suppose that U is an Ny (T})-invariant
subgroup of T3 containing Ry. Then H* < UNy(T1)Cq(1T1)/Ce(Th) < G* and

UNH(Tl)Cg<T1) N T1 = U(NH(T1>Cg(T1) N Tl) = URl = U

Thus [H*,G*] ~ [Ry, T\| Ny, (1) ~ M, If Ty <G, then G is almost simple; hence, Ng(T}) <
G, which implies that |G*| < |G|, giving us our desired contradiction.

Thus there is at least one H-invariant maximal subgroup of M that is a subdirect
subgroup of M, call it C. Then C' = Dy x --- x D,, for some m > 1 where D; is a full
diagonal subgroup of some subproduct X; := [] jer, Tj such that {1,...,k} is partitioned
by the I;. Without loss of generality, we may assume that zp, = xps forall x € D;, r,s € I;
and ¢ € {1,...,m}. Since C is H-invariant, we have again that H permutes {D1,..., D}
and {X1,...,X,,} by conjugation by Lemma 1.4.3. This action is transitive since H acts
transitively on {71,...,T;}. Note that since C' is a maximal H-invariant subgroup of M,
D :={l,...,I,} is a system of blocks which cannot be refined to a smaller nontrivial
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system (as we saw earlier in the proof). Also, by the transitivity of the action of H, there
exist 1 = y1,¥2,...,Ym € H with D; = D",

Ry X -+ X Ry is a proper H-invariant subgroup of M containing H N M. Suppose for
a contradiction that HNM = Ry X -+ X R;,. Then Ry x --- x R;, < C, so Hiel1 R, < D;.
Since any R; is nontrivial, it follows that I; can only contain 1 element, but then D, = T,
which implies that C' = M by transitivity, a contradiction. Thus R; x --- X Ry is a
maximal H-invariant subgroup of M. Now, let U be a maximal H-invariant subgroup of
M satisfying Up; < T; for all i. Then Upy x --- x Upy, is a proper H-invariant subgroup of
M containing Ry X --- X Ry and U, both of which are maximal H-invariant subgroups of
M,soU = Ry x---x Rg. Thus Ry X - -+ X Ry, is the unique maximal H-invariant subgroup
of M containing H N M that is not a subdirect subgroup of M. Moreover, it follows that
there are exactly n — 1 H-invariant subdirect subgroups of M containing H N M.

Fixi e {1,...,m}, and let s,t € [;. If x € Ry, then = yp, for some y € H N M. But
HNM < Dy x--- X Dy, s0 yps = ypy, which implies that x € R;. By symmetry, we get
that Ry, = R;. Choose r; € I;. Let R; denote the full diagonal subgroup of RL” Then
HNM=R; x-- - XR,ND X XDy, <Ry X+ XR,, <Ry XX Ry, since I, must
contain at least two elements (or else we again get that C' = M). Moreover, Ry X --- X R,
is H-invariant. Thus HNM =Ry X - -+ X R,,.

Now for our final reduction! Let X := X;. Note that R; is an Ny (X)-invariant
subgroup of X. Moreover, [[,.; R;is an Ny (X)-invariant subgroup of X containing R;.
Let K be a proper H-invariant subgroup of M containing H N M such that K # H N M
and K # Ry x --+ X Rg. Then K is a subdirect subgroup of M, so as usual we have
that K = E; X --- x E; for some [ > 1 where F; is a full diagonal subgroup of some
subproduct [];.; T} such that {1,...,k} is partitioned by the J;. Let Y; := [[,.; T; and
E:={N,...,Ji}. Asbefore, £ forms a system of blocks for the action of H on {1,...,k}.
But Ri x -+ XRp,=HNM< K =FE; xX---x FEj, so & refines D. Thus £ = D as D
cannot be refined. Tt follows that Fj is an Ny (X )-invariant subgroup of X containing R
and E; = EY". If By = Fy where L = F} x --- X F), is another such H-invariant subgroup
of M, then K = L since E; = E{* = F}/" = F; for all i. Let U be an Ng(X)-invariant
subgroup of X containing R;. Then UY' x --- x UY" is an H-invariant subgroup of M
containing H N M. This isomorphism is clearly order preserving, so we have proved that
the lattice [H N M|y is isomorphic to the lattice [R1, Xy (x)-

Define G* := Ng(X)/Cq(X) and H* := Ny(X)Cq(X)/Ce(X). Then, repeating the
proof we saw earlier with 77 replaced by X, we get that

[H*,G*] >~ [RlaX]NH(X) ~ Mn

If n > 1, then I; <{1,...,k}, which implies that X is not a normal subgroup of G. Then
Ne(X) < G, so |G*| < |G|, contradicting the minimality of G. Thus we may assume
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that m = 1 (in which case X = M, so Ng(X) = G and Cg(X) = {1}, which implies
that G* ~ G). Note here another similarity to the proof of the O’Nan-Scott Theorem:
in one case, the definition of G* involves one simple factor of M (namely, 7)), and in the
other case, a product of at least two simple factors of M (namely, X), and both cases use
essentially the same proof to arrive at essentially the same contradiction.

Let R :== R,,. Then 1 < R < T and MNH = {(t,...,t) : t € R}. Moreover, the
n — 1 H-invariant subdirect subgroups of M containing M N H must also be full diagonal
subgroups of M, and the remaining H-invariant subgroup of M containing H N M is
Ry X -+ x Ry = RFsince Ry, = Rforalli € I, = {1,...,k}. It remains to show
that R is self-normalizing in 7. Since 1 < R < T and T is simple, Ny(R) < T. Then
R* < (Np(R))® < M. (Np(R))* is H-invariant since R is H-invariant (if h € H, then
for some j, h"'Rh = R; = R). Thus R* = (Nr(R))*, so R is self-normalizing in T', as
desired. ]

3.5 n<50

Thus the problem of finitely representing M,, has been reduced to the cases when G is
almost simple, H N M = {1} or n < 50 (along with the set of assumptions made at the
beginning of Section 3.4). What about this last case? If n = 1, then M, is isomorphic to
the subgroup lattice of Z4, and if n = 2, then M,, is isomorphic to the subgroup lattice of
Zo x Z3. 1t is easy to verify that either n — 1 or n — 2 is a power of a prime, hence finitely
representable, for all integers n between 3 and 50 with the exception of the integers 16, 22,
23, 35, 36, 40, 41, 46 and 47. Moreover,

5%+ 1

22 = +1,
S5+1

so My, is finitely representable. However, suppose, for example, that
t

1

16=L2"" 1
qg+1

for some ¢ a prime power and ¢ an odd prime. Then 14 = ¢(¢'~! — 15), so ¢ | 14, which
implies that ¢ = 2 or ¢ = 7. Then 44 = 2' or 119 = 7%, both contradictions. Similarly, it
can be verified that, besides 22, none of the other integers listed above satisfy this equation.
Thus it is unknown whether M, is finitely representable for n = 16, 23, 35, 36, 40, 41, 46
and 47.

3.6 Almost Simple Case and Beyond

We are left with the cases when G is almost simple or M N H = {1}. When M N H =
{1}, Baddeley and Lucchini have reduced the set of integers n for which M,, is finitely
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representable to a subset of the natural numbers that is associated with questions about
almost simple groups. Their proof and their results, even, are quite technical; see [2].

Hence, besides the eight cases under fifty in Section 3.5, the problem of finitely repre-
senting M,, has been completely reduced to problems that concern almost simple groups.
Baddeley and Lucchini are optimistic that the classification of the finite simple groups will
answer these questions about almost simple groups in such a way that leads to a negative
answer for finite representability. Just like with finite primitive permutation groups, we
must focus on the almost simple case. Hopefully, such a focus will not only lead to a
solution to the problem of finite representability but will also answer other open problems
in finite group theory.
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