ERRATUM

JOANNA B. FAWCETT

Locally triangular graphs and normal quotients of the *n*-cube

Example 4.4. Here I claim that the halved graphs of $\Pi = (Q_n)_K$ are not isomorphic by Lemma 4.1(i) since $|\Pi_2(0^K)| = 13$ while $|\Pi_2(e_1^K)| = 14$, but this is not a very good proof! However, it is still the case that these graphs are not isomorphic: a tedious calculation shows that the halved graph of Π containing 0^K is regular with valency 13, while the halved graph of Π containing e_1^K is regular with valency 14.

Proof of Theorem 1.1. On the last line of the proof, I claim that the group K is unique up to conjugacy in $\operatorname{Aut}(Q_n)$ by Theorem 1.4. This claim is true, but Theorem 1.4 is not enough. I wish to prove the following: if Γ is a halved graph of $(Q_n)_K$ and $(Q_n)_L$ for some even $K, L \leq \operatorname{Aut}(Q_n)$ such that $d_K \geq 7$ and $d_L \geq 7$, then K and L are conjugate in $\operatorname{Aut}(Q_n)$. By Theorem 1.4, it suffices to show that $(Q_n)_K \simeq (Q_n)_L$. Since Γ is connected and locally T_n , it is a halved graph of a unique bipartite rectagraph by the comment after [1, Lemma 4.1], and since $(Q_n)_K$ and $(Q_n)_L$ are both bipartite rectagraphs, it follows that $(Q_n)_K \simeq (Q_n)_L$, as desired.